Skip to main content

Advertisement

Log in

Correlation between phase structure and polarization of Mg doped (Ba0.98Li0.02)TiO3 energy storage ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mg doped (Ba0.98Li0.02)TiO3 energy storage ceramics with antiferroelectric-like double hysteresis loops were prepared using solid-state reaction method. XRD patterns indicated that tetragonal phase structure of the pure (Ba0.98Li0.02)TiO3 ceramic was destroyed and the orthorhombic phase structure appeared with Mg doping. The ratio of orthorhombic/tetragonal phase increased with Mg content increasing, and the value of polarization was in direct proportion to the ratio of orthorhombic/tetragonal phase. The breakdown strength of (Ba0.98Li0.02)(MgxTi1−x)O3 ceramics was improved from 60.97 kV/cm at x = 0 to 103.66 kV/cm at x = 0.04. The optimum energy storage properties of (Ba0.98Li0.02)(MgxTi1−x)O3 ceramics were obtained with energy storage density of 0.76 J/cm3 at 102.5 kV/cm when x = 0.04, which is nearly 2.3 times larger than the pure (Ba0.98Li0.02)TiO3 ceramic, and the energy storage efficiency was improved from 64 to 87%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Lee, Energy Focus. (2016). https://doi.org/10.1016/j.ref.2016.02.013

    Article  Google Scholar 

  2. H. Qi, A. Xie, A. Tian, R. Zuo, Adv. Eng. Mater. (2019). https://doi.org/10.1002/aenm.201903338

    Article  Google Scholar 

  3. Z.H. Yao, Z. Song, H. Hua, Z.Y. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Adv. Mater. (2017). https://doi.org/10.1002/adma.201601727

    Article  Google Scholar 

  4. W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.03.037

    Article  Google Scholar 

  5. Z. Pan, D. Hu, Y. Zhang, J. Liu, B. Shen, J. Zhai, J. Mater. Chem. C (2019). https://doi.org/10.1039/c9tc00087a

    Article  Google Scholar 

  6. Y. Zhang, S. Gao, H. Xing, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.10.378

    Article  Google Scholar 

  7. L. Zhang, Y. Pu, M. Chen, T. Wei, X. Peng, Chem. Eng. J. (2020) https://doi.org/10.1016/j.cej.2019.123154

    Article  Google Scholar 

  8. T.Q. Shao, H.L. Du, H. Ma, S.B. Qu, J. Wang, J.F. Wang, X.Y. Wei, Z. Xu, J. Mater. Chem. A (2017). https://doi.org/10.1039/C6TA07803F

    Article  Google Scholar 

  9. Q.B. Yuan, F.Z. Yao, Y.F. Wang, R. Ma, H. Wang, J. Mater. Chem. C. (2017) https://doi.org/10.1039/C7TC02478A

    Article  Google Scholar 

  10. Q.Y. Hu, Y. Tian, Q.S. Zhu, J.H. Bian, L. Jin, H.L. Du, D.O. Alikin, VYa. Shur, Y.J. Feng, Z. Xu, X.Y. Wei, Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104264

    Article  Google Scholar 

  11. Z. Liu, T. Lu, J. Ye, G. Wang, X. Dong, R. Withers, Y. Liu, Adv. Mater. Technol. (2018) https://doi.org/10.1002/admt.201800111

    Article  Google Scholar 

  12. H.R. Jo, C.S. Lynch, J. Appl. Phys. (2016) https://doi.org/10.1063/1.4939617

    Article  Google Scholar 

  13. M.D. Nguyen, G. Rijinders, J. Eur. Ceram. Soc. (2018) https://doi.org/10.1016/j.jeurceramsoc.2018.07.026

    Article  Google Scholar 

  14. Y. Xu, G. Wang, Y. Tian, X. Liu, Y. Feng, Ceram. Int. (2016) https://doi.org/10.1016/j.ceramint.2016.09.021

    Article  Google Scholar 

  15. Y.H. Xu, Y. Guo, Q. Liu, G.D. Wang, J.L. Bai, J.J. Tian, L. Lin, Y. Tian, J. Eur. Ceram. Soc. (2020) https://doi.org/10.1016/j.jeurceramsoc.2019.09.022

    Article  Google Scholar 

  16. L. Zhao, J. Gao, Q. Liu, S.J. Zhang, J.F. Li, ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.7b17382

    Article  Google Scholar 

  17. P.R. Rena, D. Ren, L. Sun, F.X. Yan, S. Yang, G.Y. Zhao, J. Eur. Ceram. Soc. (2020) https://doi.org/10.1016/j.jeurceramsoc.2020.05.076

    Article  Google Scholar 

  18. J. Gao, L. Zhao, Q. Liu, X. Wang, S. Zhang, J.F. Li, J. Am. Ceram. Soc. (2018) https://doi.org/10.1111/jace.15780

    Article  Google Scholar 

  19. K. Yan, F.F. Wang, D.W. Wu, X.B. Ren, K.J. Zhu, J. Am. Ceram. Soc. (2019) https://doi.org/10.1111/jace.16117

    Article  Google Scholar 

  20. W.W. Ping, W.F. Liu, S.T. Li, Ceram. Int. (2019) https://doi.org/10.1016/j.ceramint.2019.03.003

    Article  Google Scholar 

  21. T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, D. Lupascu, J. Am. Ceram. Soc. (2015) https://doi.org/10.1111/jace.13325

    Article  Google Scholar 

  22. X. Ren, Nat. Mater. (2004) https://doi.org/10.1038/nmat1051

    Article  Google Scholar 

  23. W.F. Liu, J.H. Gao, Y. Zhao, S.T. Li, J. Alloys Compd. (2020) https://doi.org/10.1016/j.jallcom.2020.155938

    Article  Google Scholar 

  24. M. Wei, J.H. Zhang, K.T. Wu, H.W. Chen, C.R. Yang, Ceram. Int. (2017) https://doi.org/10.1016/j.ceramint.2017.03.139

    Article  Google Scholar 

  25. G. Liu, Y. Li, B. Guo, M.Y. Tang, Q. Li, J. Dong, L.J. Yu, K. Yu, Y. Yan, D.W. Wang, L.Y. Zhang, H.B. Zhang, Z.B. He, L. Jin, Chem. Eng. J. (2020) https://doi.org/10.1016/j.cej.2020.125625

    Article  Google Scholar 

  26. C. Wang, F. Yan, H. Yang, Y. Lin, T. Wang, J. Alloy Compd. (2018) https://doi.org/10.1016/j.jallcom.2018.03.195

    Article  Google Scholar 

  27. W.M. Xia, N. Zhang, H.X. Yang, C.J. Cao, J.L. Li, J. Alloy Compd. (2019) https://doi.org/10.1016/j.jallcom.2019.02.332

    Article  Google Scholar 

  28. C.L. Diao, H.X. Liu, H. Hao, M.H. Cao, Z.H. Yao, Ceram. Int. (2016) https://doi.org/10.1016/j.ceramint.2016.04.169

    Article  Google Scholar 

  29. G.W. Yan, M.G. Ma, C.B. Li, Z.W. Li, X.Y. Zhong, J. Yang, F. Wu, Z.H. Chen, J. Alloy Compd. (2021) https://doi.org/10.1016/j.jallcom.2020.158021

    Article  Google Scholar 

  30. N. Huang, H.X. Liu, H. Hao, Z.H. Yao, M.H. Cao, J. Xie, Ceram. Int. (2019) https://doi.org/10.1016/j.ceramint.2019.04.227

    Article  Google Scholar 

  31. G. Liu, J. Dong, L.Y. Zhang, L.J. Yu, F.B. Wei, Y. Li, J.H. Gao, J.Z. Hu, Y. Yan, Q. Li, K. Yu, L. Jin, Ceram. Int. (2020) https://doi.org/10.1016/j.ceramint.2020.01.199

    Article  Google Scholar 

  32. Y.T. Lin, S.F. Ou, M.H. Lin, Y.R. Song, Ceram. Int. (2018) https://doi.org/10.1016/j.ceramint.2017.10.155

    Article  Google Scholar 

  33. H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, H. Tagawa, Solid State Ionics (1999) https://doi.org/10.1016/S0167-2738(99)00066-1

    Article  Google Scholar 

  34. M.T. Yao, Y.P. Pu, H.Y. Zheng, L. Zhang, M. Chen, Y.F. Cui, Ceram. Int. (2016) https://doi.org/10.1016/j.ceramint.2016.02.155

    Article  Google Scholar 

  35. P. Ren, Q. Wang, S. Li, G. Zhao, J. Eur. Ceram. Soc. (2017) https://doi.org/10.1016/j.jeurceramsoc.2016.12.016

    Article  Google Scholar 

  36. H.B. Yang, F. Yan, Y. Lin, T. Wang, L. He, F. Wang, J. Alloy Compd. (2017) https://doi.org/10.1016/j.jallcom.2017.03.261

    Article  Google Scholar 

  37. Z.L. Lu, W.C. Bao, G. Wang, S.K. Suan, L.H. Li, J.L. Li, H.J. Yang, H.F. Ji, A. Feteira, D.J. Li, F.F. Xu, A.K. Kleppe, D.W. Wang, S.Y. Liu, I.M. Reaney, Nano Energy (2021) https://doi.org/10.1016/j.nanoen.2020.105423

    Article  Google Scholar 

  38. W. Cai, C.L. Fu, J.C. Gao, C.X. Zhao, Adv. Appl. Ceram. (2011). https://doi.org/10.1179/1743676110Y.0000000019

    Article  Google Scholar 

  39. M.X. Zhou, R.H. Liang, Z.Y. Zhou, X.L. Dong, Ceram. Int. (2019) https://doi.org/10.1016/j.ceramint.2018.11.018

    Article  Google Scholar 

  40. S.X. Xue, S.H. Liu, W.Q. Zhang, J.W. Zhang, J.W. Wang, L.J. Tang, B. Shen, J.W. Zhai, J. Alloy Compd. (2014) https://doi.org/10.1016/j.jallcom.2014.08.006

    Article  Google Scholar 

  41. X.C. Wang, W.Q. Cai, Z. Xiao, G.G. Yang, X.M. Yu, J.W. Chen, D.C. Chen, Q.F. Zhang, M. Chen, J. Eur. Ceram. Soc. (2021) https://doi.org/10.1016/j.jeurceramsoc.2021.04.030

    Article  Google Scholar 

  42. M. Xu, B. Peng, J. Zhu, L. Liu, W. Sun, G.J.T. Leighton, C. Shaw, N. Luo, Q. Zhang, J. Alloy Compd. (2019) https://doi.org/10.1016/j.jallcom.2019.02.314

    Article  Google Scholar 

  43. Y.Y. Guo, M.J. Liu, Y.F. Guo, T. Wei, Y.J. Guo, N. Zhang, AIP Adv. (2015). https://doi.org/10.1063/1.4930259

    Article  Google Scholar 

  44. G. Liu, Y. Li, J.H. Gao, D.Q. Li, L.J. Yu, J. Dong, Y.T. Zhang, Y. Yan, B.Y. Fan, X.Y. Liu, L. Jin, J. Alloy Compd. (2020) https://doi.org/10.1016/j.jallcom.2020.154160

    Article  Google Scholar 

  45. R. Machado, A. Di Loreto, A. Frattini, M. Sepliarsky, M.G. Stachiotti, J. Alloy Compd. (2019) https://doi.org/10.1016/j.jallcom.2019.151847

    Article  Google Scholar 

Download references

Funding

This work was supported by (National Natural Science Foundation of China) [Grant No. (51702024)].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by GY, QL, BF and ZC. The first draft of the manuscript was written by GY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bi-jun Fang or Zhi-hui Chen.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Gw., Liu, Qq., Fang, Bj. et al. Correlation between phase structure and polarization of Mg doped (Ba0.98Li0.02)TiO3 energy storage ceramics. J Mater Sci: Mater Electron 33, 20981–20991 (2022). https://doi.org/10.1007/s10854-022-08903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08903-5

Navigation