Skip to main content
Log in

Tunable sensitivity of zirconium oxynitride thin-film temperature sensor modulated by film thickness

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZrOxNy thin films with different thicknesses were deposited on sapphire substrates using DC magnetron reactive sputtering. The electrodes were then deposited on the surface of the films using DC magnetron sputtering to produce temperature sensors. The electrical characteristics of the sensors from 4.3 to 300 K were determined by the physical property measurement system. The resistance–temperature (RT) characteristic curves indicated that the reduction in the thickness of ZrOxNy films greatly improved the resistance and sensitivity of the sensors. In particular, the absolute value of temperature coefficient of resistance near room temperature reached 0.9% K−1. The microstructure and optical properties of ZrOxNy films were evaluated using scanning electron microscopy, X-ray diffraction, Raman spectra, and spectrophotometric measurements. As the film thickness decreased, the microstructure changed from ZrN to poorly crystallized o-Zr3N4, and the bandgap was widened. Moreover, the conduction mechanism fitting results showed the crossover behaviors of Mott-variable range hopping (Mott-VRH) and thermal activation mechanisms upon changes in the thickness and temperature. The increased lattice distortion and phase transition in the ZrOxNy films and the extension of the Mott-VRH to the high-temperature region are responsible for the improved sensor sensitivity. This study provides a simple, low-cost, and highly sensitive solution for room-temperature sensors that can be widely used in temperature monitoring for industry, agriculture, and semiconductor manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. M. Zeyad, S. Ghosh, in 2018 4th International Conference on Electrical Engineering and Information & Communication Technology, pp. 557–560 (2018)

  2. D.B. Deutz, S. van der Zwaag, P. Groen, Mater. Res. Express 7, 025702 (2020)

    Article  CAS  Google Scholar 

  3. C.J. Yeager, S.S. Courts, IEEE Sens. J. 1, 352–360 (2001)

    Article  CAS  Google Scholar 

  4. R.L. Rusby, D. Machin, Int. J. Thermophys. 38, 117 (2017)

    Article  CAS  Google Scholar 

  5. Y.P. Filippov, Y.A. Dedikov, G.A. Kytin, IEEE Trans. Appl. Supercond. 16, 445–448 (2006)

    Article  CAS  Google Scholar 

  6. S. Pal, R. Kar, A. Mandal, A. Das, S. Saha, Meas. Sci. Technol. 28, 055013 (2017)

    Article  CAS  Google Scholar 

  7. E. Gati, G. Drachuck, L. Xiang, L.L. Wang, S.L. Bud’ko, P.C. Canfield, Rev. Sci. Instrum. 90, 023911 (2019)

    Article  CAS  Google Scholar 

  8. S.S. Courts, Cryogenics 107, 103050 (2020)

    Article  CAS  Google Scholar 

  9. S.S. Courts, P.R. Swinehart, AIP Conf. Proc. 684, 393–398 (2003)

    Article  CAS  Google Scholar 

  10. A. Fuertes, Mater. Horiz. 2, 453–461 (2015)

    Article  CAS  Google Scholar 

  11. Y.Y. Yuan, R. Lan, C. Yan, R. Liu, Mod. Phys. Lett. B 32, 1840066 (2018)

    Article  CAS  Google Scholar 

  12. J.K. Wu, Z.G. Li, L.P. Peng, Y. Yi, J.C. Zhang, Physica B 624, 413428 (2022)

    Article  CAS  Google Scholar 

  13. G.H. Zhan, Z.D. Lin, B. Xu, J. Feng, B. Yang, X. Chen, C.S. Yang, J.Q. Liu, J. Mater. Sci.-Mater. Electron. 28, 9653–9657 (2017)

    Article  CAS  Google Scholar 

  14. J.F. Cai, S.C. Wu, J.J. Li, Condens. Matter 6, 32 (2021)

    Article  CAS  Google Scholar 

  15. A.S. Kuprin, A. Gilewicz, T.A. Kuznetsova, V.A. Lapitskaya, G.N. Tolmachova, B. Warcholinski, S.M. Aizikovich, E.V. Sadyrin, Materials 14, 1483 (2021)

    Article  CAS  Google Scholar 

  16. J.D. Castro, M.J. Lima, I. Carvalho, M. Henriques, S. Carvalho, Appl. Surf. Sci. 555, 149704 (2021)

    Article  CAS  Google Scholar 

  17. U. Schnakenberg, C. Köhler, T. Lisec, R. Hintsche, Anal. Chim. Acta 305, 126–136 (1995)

    Article  Google Scholar 

  18. Y. Li, F. Wang, M. You, Z. Lin, J. Liu, Cryogenics 105, 102997 (2020)

    Article  CAS  Google Scholar 

  19. B.A. Kuzubasoglu, E. Sayar, C. Cochrane, V. Koncar, S.K. Bahadir, J. Mater. Sci.-Mater. Electron. 32, 4784–4797 (2021)

    Article  CAS  Google Scholar 

  20. A.I. Khan, P. Khakbaz, K.A. Brenner, K.K.H. Smithe, M.J. Mleczko, D. Esseni, E. Pop, Appl. Phys. Lett. 116, 203105 (2020)

    Article  CAS  Google Scholar 

  21. T.H. Eom, J.I. Han, Sens. Actuators A-Phys. 259, 96–104 (2017)

    Article  CAS  Google Scholar 

  22. M. Gamil, N.M. Shaalan, A. Abd El-Moneim, Sens. Rev. 41, 251–259 (2021)

    Article  Google Scholar 

  23. S.C. Lin, J. Zhang, R.H. Zhu, S.C. Fu, D.Q. Yun, Mater. Res. Bull. 105, 231–236 (2018)

    Article  CAS  Google Scholar 

  24. Y.-E. Ke, Y.-I. Chen, Coatings 10, 476 (2020)

    Article  CAS  Google Scholar 

  25. W. Wu, Z. Zhao, B. Shen, J. Zhai, S. Song, Z. Song, Nanoscale 10, 7228–7237 (2018)

    Article  CAS  Google Scholar 

  26. M. Zacharias, P. Streitenberger, Phys. Rev. B 62, 8391–8396 (2000)

    Article  CAS  Google Scholar 

  27. P.R. Swinehart, S.S. Courts, D.S. Holmes, U. S. Patent 5367285 (1994)

  28. V. Uvarov, I. Popov, Mater. Charact. 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  29. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  30. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  31. Y.M. Chen, B. Liao, X.Y. Wu, H.X. Zhang, X. Zhang, Surf. Coat. Technol. 228, S210–S213 (2013)

    Article  CAS  Google Scholar 

  32. S.K. Rawal, A.K. Chawla, V. Chawla, R. Jayaganthan, R. Chandra, Mater. Sci. Eng. B-Adv. 172, 259–266 (2010)

    Article  CAS  Google Scholar 

  33. A. Rizzo, M.A. Signore, L. Mirenghi, L. Tapfer, E. Piscopiello, E. Salernitano, R. Giorgi, Thin Solid Films 520, 3532–3538 (2012)

    Article  CAS  Google Scholar 

  34. Z.C. Feng, M. Schurman, R.A. Stall, M. Pavlosky, A. Whitley, Appl. Opt. 36, 2917–2922 (1997)

    Article  CAS  Google Scholar 

  35. X.J. Chen, V.V. Struzhkin, S. Kung, H.K. Mao, R.J. Hemley, A.N. Christensen, Phys. Rev. B 70, 014501 (2004)

    Article  CAS  Google Scholar 

  36. A.N. Christensen, O.W. Dietrich, W. Kress, W.D. Teuchert, Phys. Rev. B 19, 5699–5703 (1979)

    Article  CAS  Google Scholar 

  37. A. Singh, P. Kuppusami, S. Khan, C. Sudha, R. Thirumurugesan, R. Ramaseshan, R. Divakar, E. Mohandas, S. Dash, Appl. Surf. Sci. 280, 117–123 (2013)

    Article  CAS  Google Scholar 

  38. C. Moura, P. Carvalho, F. Vaz, L. Cunha, E. Alves, Thin Solid Films 515, 1132–1137 (2006)

    Article  CAS  Google Scholar 

  39. A. Yildiz, N. Serin, M. Kasap, T. Serin, D. Mardare, J. Alloys Compd. 493, 227–232 (2010)

    Article  CAS  Google Scholar 

  40. S.K. Gullapalli, R.S. Vemuri, C.V. Ramana, Appl. Phys. Lett. 96, 171903 (2010)

    Article  CAS  Google Scholar 

  41. K. Imanishi, Y. Watanabe, T. Watanabe, T. Tsuchiya, J. Non·Cryst. Solids 259, 139–143 (1999)

    Article  CAS  Google Scholar 

  42. D.T. Speaks, Int. J. Mech. Mater. Eng. 15, 2 (2020)

    Article  Google Scholar 

  43. L.M. Atagi, J.A. Samuels, D.C. Smith, D.M. Hoffman, in Symposium on Covalent Ceramics III - Science and Technology of Non-Oxides, pp. 289–294 (1995)

  44. P. Prieto, F. Yubero, E. Elizalde, J.M. Sanz, J. Vac. Sci. Technol. A 14, 3181–3188 (1996)

    Article  CAS  Google Scholar 

  45. Y.M. Chen, H.Q. Zhang, Z.W. Li, W. Cao, B. Liao, X. Zhang, Surf. Eng. 29, 567–571 (2013)

    Article  CAS  Google Scholar 

  46. A.D. Yoffe, Adv. Phys. 42, 173–266 (1993)

    Article  CAS  Google Scholar 

  47. J. Chen, L. Zheng, W. Yin, M. Zhang, Y. Lu, Z. Zhang, P.J. Klar, M. Li, Y. He, Physica B 599, 412467 (2020)

    Article  CAS  Google Scholar 

  48. P. Wang, T. Wang, H. Wang, X. Sun, P. Huang, B. Sheng, X. Rong, X. Zheng, Z. Chen, Y. Wang, D. Wang, H. Liu, F. Liu, L. Yang, D. Li, L. Chen, X. Yang, F. Xu, Z. Qin, J. Shi, T. Yu, W. Ge, B. Shen, X. Wang, Adv. Funct. Mater. 29, 1902608 (2019)

    Article  CAS  Google Scholar 

  49. S. Baskoutas, P. Poulopoulos, V. Karoutsos, M. Angelakeris, N.K. Flevaris, Chem. Phys. Lett. 417, 461–464 (2006)

    Article  CAS  Google Scholar 

  50. M.E. McGahay, S.V. Khare, D. Gall, Phys. Rev. B 102, 235102 (2020)

    Article  CAS  Google Scholar 

  51. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, Oxford, 2012)

    Google Scholar 

  52. N.F. Mott, J. Non-Cryst, Solids 1, 1–17 (1968)

    CAS  Google Scholar 

  53. C. Lu, A. Quindeau, H. Deniz, D. Preziosi, D. Hesse, M. Alexe, Appl. Phys. Lett. 105, 082407 (2014)

    Article  CAS  Google Scholar 

  54. X. Chen, B. Wang, Y. Chen, H. Wei, B. Cao, J. Phys. D: Appl. Phys. 54, 235302 (2021)

    Article  CAS  Google Scholar 

  55. D.I. Bazhanov, A.A. Knizhnik, A.A. Safonov, A.A. Bagatur’yants, M.W. Stoker, A.A. Korkin, J. Appl. Phys. 97, 044108 (2005)

    Article  CAS  Google Scholar 

  56. E.K.K. Abavare, M.K.E. Donkor, S.N.A. Dodoo, O. Akoto, F.K. Ampong, B. Kwaakye-Awuah, R.K. Nkum, Comput. Mater. Sci 137, 75–84 (2017)

    Article  CAS  Google Scholar 

  57. A. Khan, F. Rahman, A. Ahad, P. Alvi, Physica B 592, 412282 (2020)

    Article  CAS  Google Scholar 

  58. Z. Lin, G. Zhan, M. You, B. Yang, X. Chen, X. Wang, W. Zhang, J. Liu, Appl. Phys. Lett. 113, 133504 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA25040000), the National Key R&D Program of China (2020YFB1313502), the National Natural Science Foundation of China (61728402), SJTU Trans-med Award (2019015), the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (SL2020ZD205), Scientific Research Fund of Second Institute of Oceanography, MNR (SL2020ZD205). The authors are also grateful to the Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University.

Funding

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA25040000), the National Key R&D Program of China (2020YFB1313502), the National Natural Science Foundation of China (61728402), SJTU Trans-med Award (2019015), the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (SL2020ZD205) and Scientific Research Fund of Second Institute of Oceanography, MNR (SL2020ZD205).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by YL. Analysis was performed by YL and MY. Editing was performed by ZL and MY. Supervision and writing reviewing were performed by ZL, XL, BY and JL. The first draft of the manuscript was written by YL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zude Lin or Jingquan Liu.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 370 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., You, M., Li, X. et al. Tunable sensitivity of zirconium oxynitride thin-film temperature sensor modulated by film thickness. J Mater Sci: Mater Electron 33, 20940–20952 (2022). https://doi.org/10.1007/s10854-022-08900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08900-8

Navigation