Skip to main content
Log in

The electrochromic properties of the film enhanced by forming WO3 and PANI core–shell structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrochromism refers to the change in the reversible color of certain materials in response to an electric field to regulate light. In this paper, WO3 thin films were prepared by hydrothermal method, and then PANI was deposited on the surface of WO3 by electrodeposition method. The organic and non-electrochromic materials were combined together, and the core–shell structure of WO3/PANI was finally obtained. The electrochromic properties of core–shell composite films are significantly improved. In particular, the cyclic stability of core–shell composite films is superior to that of single material electrochromic films. At the same time, the composite film demonstrates fast electrochromic response and large ion diffusion coefficient. The Li+ diffusion coefficient of WO3 film is 4.37 × 10–10 cm2/s, and that of WO3/PANI film is 4.93 × 10–10 cm2/s, 13% higher than that of the single film. The number of electrons and ions entering the film is greatly increased, and these improvements optimize the electrochromic properties of the film. The results show that WO3/PANI core–shell structure has broad research and application prospects as electrochromic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Our datasets of the paper are presented in the main manuscript.

References

  1. J. Guo, M. Wang, X. Diao, Z. Zhang, G. Dong, H. Yu, J. Liu, Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 films. J. Phys. Chem. 122, 19037–19043 (2018)

    CAS  Google Scholar 

  2. D. Dong, W. Wang, A. Barnab, L. Presmanes, A. Rougier, G. Dong, X. Diao, Enhanced electrochromism in short wavelengths for NiO films in full inorganic device ITO/NiO/Ta2O5/WO3/ITO. Electrochim. Acta 263, 277–285 (2018)

    Article  CAS  Google Scholar 

  3. G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12, 258–267 (2015)

    Article  CAS  Google Scholar 

  4. K. Wang, H. Wu, Y. Meng, Y. Zhang, Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. Sci. 5, 8384–8389 (2012)

    Article  CAS  Google Scholar 

  5. Q. Zeng, S. Guo, Y. Sun, Z. Li, W. Feng, Protonation-induced enhanced optical-light photochromic properties of an inorganic-organic phosphomolybdic acid/polyaniline hybrid thin film. Nanomaterials 2020, 10 (1839)

    Google Scholar 

  6. Karakurt, J. Boneberg, P. Leiderer, Electrochromic switching of WO3 nanostructures and thin films. Appl. Phys. A 83, 1–3 (2016)

    Article  CAS  Google Scholar 

  7. A. Chaudhary, D.K. Pathak, M. Tanwar, R. Dash, B. Joshi, T. Keerthivasan, R. Kumar, Hydrothermally grown nano-WO3 electrochromic film structural and Raman spectroscopic study. Adv. Mater. Process. Technol. 11, 1–7 (2020)

    CAS  Google Scholar 

  8. A. Karuppasamy, A. Subrahmanyam, Studies on electrochromic smart windows based on titanium doped WO3 thin films. Thin Solid Films 16, 175–178 (2017)

    Google Scholar 

  9. L. Meda, R. Breitkopf, T. Haas, R. Kirss, Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film. Thin Solid Films 402, 126–130 (2012)

    Article  Google Scholar 

  10. B.W.C. Au, K.Y. Chan, W.L. Pang, Electrochromic properties of WO3 films based on lithium iodide and lithium perchlorate polymer electrolyte. Optik 225, 165–769 (2020)

    Google Scholar 

  11. S.R. Bathe, P.S. Patil, WO3 thin films doped with Ru by facile chemical method with enhanced electrochromic properties for electrochromic window application. Mater. Sci. Eng. B 257, 114–542 (2020)

    Article  CAS  Google Scholar 

  12. A. Khan, N.Y. Bhosale, S.S. Mali, Reduced graphene oxide layered WO3 thin film with enhanced electrochromic properties. J. Colloid Interface Sci. 571, 185–193 (2020)

    Article  CAS  Google Scholar 

  13. Z.J. Xia, H.L. Wang, Y.F. Su, P. Tang, M.J. Dai, H.J. Lin, Q. Shi, Enhanced electrochromic properties by improvement of crystallinity for sputtered WO3 film. Coatings 10, 6–17 (2020)

    Article  CAS  Google Scholar 

  14. W. Thongpan, D. Louloudakis, P. Pooseekheaw, T. Kumpika, E. Kantarak, A. Panthawan, P. Singjai, Porous CuWO4/WO3 composite films with improved electrochromic properties prepared by sparking method. Mater. Lett. 257, 126747 (2019)

    Article  CAS  Google Scholar 

  15. G. Atak, D. Cokun, Effects of anodic layer thickness on overall performance of all-solid-state electrochromic device. Solid State Ionics 341, 115–145 (2019)

    Article  CAS  Google Scholar 

  16. C. Hua, G. Yuan, Z. Cheng, H. Jiang, G. Xu, Y. Liu, G. Han, Building architecture of TiO2 nanocrystals embedded in amorphous WO3 films with improved electrochromic properties. Electrochim. Acta 309, 354–361 (2019)

    Article  CAS  Google Scholar 

  17. D. Xu, L. Li, W. Fan, F. Wang, H. Bai, B. Mao, W. Shi, Preparation of WO3 thin films by dip film-drawing for photoelectrochemical performance. Chin. J. Chem. Eng. 27, 1207–1211 (2019)

    Article  CAS  Google Scholar 

  18. Y. Liu, G. Yuan, C. Hua, Y. Zhang, G. Han, H. Jiang, Improvement of electrochromic performance by embedding ITO nanocrystals in amorphous WO3 film. ECS J. Solid State Sci. Technol. 8, 1 (2019)

    Article  CAS  Google Scholar 

  19. M. Yano, W. Kuwagata, H. Mito, K. Koike, S. Kobayashi, K. Inaba, Electrochromic properties of epitaxial WO3 thin films grown on sapphire substrates. Jpn. J. Appl. Phys. 57, 3–9 (2018)

    Article  Google Scholar 

  20. H. Wei, X. Yan, S. Wu, Z. Luo, S. Wei, Z. Guo, Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage. J. Phys. Chem. C 116, 25052–25064 (2012)

    Article  CAS  Google Scholar 

  21. V. Adimule, S.S. Nandi, B.C. Yallur, Enhanced photoluminescence properties of Gd(x1) SrxO:CdO nanocores and their study of optical, structural, and morphological characteristics. Mater. Today Chem. 20, 100438 (2021)

    Article  CAS  Google Scholar 

  22. V. Adimule, S.S. Nandi, B.C. Yallur, Optical, structural and photoluminescence properties of GdxSrO:CdO nanostructures synthesized by Co precipitation method. J. Fluoresc. 31, 487–499 (2021)

    Article  CAS  Google Scholar 

  23. N.M. Shaikh, G.B. Bagihalli, V. Adimule, A novel silica immobilised acidic ionic liquid [BMIM][AlCl4] as an effective catalyst for biscoumarine synthesis. Top. Catal. 4, 1–9 (2022)

    Google Scholar 

  24. G.F. Cai, J.P. Tu, D. Zhou, J.H. Zhang, X.L. Wang, C.D. Gu, Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Sol. Energy Mater. Sol. Cells 122, 51–58 (2014)

    Article  CAS  Google Scholar 

  25. C.M. Chang, Y.C. Chiang, M.H. Cheng, Fabrication of WO3 electrochromic devices using electro-exploding wire techniques and spray coating. Sol. Energy Mater. Sol. Cells 223, 110960 (2021)

    Article  CAS  Google Scholar 

  26. J. Guo, M. Wang, X. Diao, Z. Zhang, G. Dong, H. Yu, J. Liu, Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 films. J. Phys. Chem. C 122, 19037–19043 (2018)

    Article  CAS  Google Scholar 

  27. L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, J. Liu, A soft approach to encapsulate sulfur polyaniline nanotubes for lithium sulfur batteries with long cycle life. Adv. Mater. 24, 1176–1181 (2012)

    Article  CAS  Google Scholar 

  28. X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance. Nanotechnology 19, 465–501 (2008)

    Article  Google Scholar 

  29. E. Eren, C. Alver, G.Y. Karaca, E. Uygun, A.U. Oksuz, Enhanced electrochromic performance of WO3 hybrids using polymer plasma hybridization process. Synth. Met. 235, 115–124 (2018)

    Article  CAS  Google Scholar 

  30. R. Sivakumar, A. Raj, B. Subramanian, M. Jayachandran, D.C. Trivedi, C. Sanjeeviraja, Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices. Mater. Res. Bull. 3910, 1479–1489 (2004)

    Article  CAS  Google Scholar 

  31. S. Mathuri, M.M. Margoni, K. Ramamurthi, R.R. Babu, V. Ganesh, Hydrothermal assisted growth of vertically aligned platelet like structures of WO3 films on transparent conducting FTO substrate for electrochromic performance. Appl. Surf. Sci. 449, 77–91 (2018)

    Article  CAS  Google Scholar 

  32. S.A. Agnihotry, N. Sharma, M. Deepa, Ion exchange derived precursor materials for deposition of WO3 electrochromic films spectroscopic investigations. J. Sol–Gel. Sci. Technol. 24, 265–270 (2002)

    Article  CAS  Google Scholar 

  33. C. Lefrou, C. Gentilhomme, M. Ast, Testing of electrochromic materials using symmetrical devices. J. Appl. Electrochem. 369, 1011–1019 (2006)

    Article  CAS  Google Scholar 

  34. F. Huguenin, E.R. Gonzalez, O.N. Oliveira, Electrochemical and electrochromic properties of layer-by-layer films from WO3 and chitosan. J. Phys. Chem. B 10926, 12837–12844 (2005)

    Article  CAS  Google Scholar 

  35. R. Vijayalakshmi, M. Jayachandran, D.C. Trivedi, C. Sanjeeviraja, Study of the potassium ion insertion of the electrodeposited electrochromic tungsten trioxide thin films. Ionics 1012, 151–154 (2004)

    Article  Google Scholar 

  36. P.J. Wojcik, A.S. Cruz, L. Santos, L. Pereira, R. Martins, E. Fortunato, Microstructure control of dual-phase inkjet-printed a-WO3/TiO2/WOx films for high-performance electrochromic applications. J. Mater. Chem. 2226, 13268–13278 (2012)

    Article  CAS  Google Scholar 

  37. S.R. Bathe, P.S. Patil, Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films. Solid State Ionics 103, 14 (2008)

    Google Scholar 

  38. S. Zhang, J. Ren, S. Chen, Y. Luo, X. Bai, L. Ye, Y. Cao, Large area electrochromic displays with ultrafast response speed and high contrast using solution-processable and patternable honeycomb-like polyaniline nanostructures. J. Electroanal. Chem. 18, 114–248 (2020)

    Google Scholar 

  39. R. Celiesiute, A. Ramanaviciene, M. Gicevicius, A. Ramanavicius, Electrochromic sensors based on conducting polymers metal oxides and coordination complexes. Crit. Rev. Anal. Chem. 493, 195–208 (2019)

    Article  CAS  Google Scholar 

  40. S. Bilal, S. Gul, R. Holze, An impressive emulsion polymerization route for the synthesis of highly soluble and conducting polyaniline salts. Synth. Met. 206, 131–144 (2015)

    Article  CAS  Google Scholar 

  41. B.P. Jelle, G. Hagen, Performance of an electrochromic window based on polyaniline prussian blue and tungsten oxide. Sol. Energy Mater. Sol. Cells 58, 277–286 (1999)

    Article  CAS  Google Scholar 

  42. E. Avendano, L. Berggren, G. Niklasson, C.G. Granqvist, A. Azens, Electrochromic materials and devices brief survey and new data on optical absorption in tungsten oxide and nickel oxide films. Thin Solid Films 496, 30–36 (2006)

    Article  CAS  Google Scholar 

  43. Y. Li, Z.F. Liu, X.P. Liang, J. Ya, T. Cui, Z.C. Liu, Synthesis and electrochromic properties of PEG doped WO3 film. Mater. Technol. 29, 341–349 (2014)

    Article  CAS  Google Scholar 

  44. F. Peng, H. Zhong, G. Wu, X. Xiang, Correlation between lithium storage and diffusion properties and electrochromic characteristics of WO3 thin films. Chin. Phys. B 22, 38101 (2013)

    Article  Google Scholar 

  45. B. Pehlivan, G. Atak, G. Niklasson, L. Stolt, M. Edoff, T. Edvinsson, Electrochromic solar water splitting using a cathodic WO3 electrocatalyst. Nano Energy 15, 105–120 (2020)

    Google Scholar 

Download references

Funding

No funding was received for the research reported in the article.

Author information

Authors and Affiliations

Authors

Contributions

YZ and LZ contributed to experimental scheme and writing––original draft preparation; YZ experimental validation and data curation; LZ did examination. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lei Zhao.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 669 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, L. The electrochromic properties of the film enhanced by forming WO3 and PANI core–shell structure. J Mater Sci: Mater Electron 33, 20802–20811 (2022). https://doi.org/10.1007/s10854-022-08889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08889-0

Navigation