Skip to main content
Log in

The effects of Ni/Cu co-doped ZnO nanorods: structural and optoelectronic study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hydrothermal method was used to synthesize Zn0.99−xNixCu0.01O (x = 0.00 to 0.05 with a 0.01 increment) nanorods. The X-ray diffraction method was used to provide the structural analysis. It was observed that all Ni/Cu co-doped ZnO nanorods are single phases. The Scanning Electron Microscope and Electron Dispersive Spectroscopy were employed to monitor the surface morphology, shapes, size, and elemental compositions of the Ni/Cu co-doped ZnO nanorods. The Fourier Transform Infrared studies were performed and detailed. The UV-Spectrophotometer was used to obtain the optical properties of the nanorods. The energy band gaps of Ni/Cu-doped ZnO nanorods were calculated and their effects on optical properties were discussed. Five different models were used to calculate the refractive index. Multi-doped (Ni and Cu) ZnO nanorods were successfully produced using the hydrothermal method and their structural, band gap and refractive indexes were discussed for optoelectronic and sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. E. Asikuzun, O. Ozturk, L. Arda, A.T. Tasci, F. Kartal, C. Terzioglu, High-quality c-axis oriented non-vacuum Er doped ZnO thin films. Ceram. Int. 2, 8085–8091 (2016)

    Article  CAS  Google Scholar 

  2. C. Boyraz, N. Doğan, L. Arda, Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles. Ceram. Int. 43, 15986–15991 (2017)

    Article  CAS  Google Scholar 

  3. S. Demirozu Senol, Influence of Mg doping on the structural, optical, and electrical properties of Zn 0.95 Li 0.05 O Nanoparticles. Int. J. Appl. Ceram. Technol. 16, 138–145 (2019)

    Article  CAS  Google Scholar 

  4. I.P. Duru, E. Ozugurlu, L. Arda, Size effect on magnetic properties of Zn0.95−x Mgx Ni0.05 O nanoparticles by Monte Carlo simulation. Ceram. Int. 45(5), 5259–5265 (2019)

    Article  CAS  Google Scholar 

  5. S.D. Senol, E. Ozugurlu, L. Arda, The effect of cobalt and boron on the structural, microstructural, and optoelectronic properties of ZnO nanoparticles. Ceram. Int. 46, 7033–7044 (2020)

    Article  CAS  Google Scholar 

  6. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  CAS  Google Scholar 

  7. A. Guler, L. Arda, N. Dogan, C. Boyraz, E. Ozugurlu, The annealing effect on microstructure and ESR properties of (Cu/Ni) codoped ZnO nanoparticles. Ceram. Int. 45, 1737–1745 (2019)

    Article  CAS  Google Scholar 

  8. A.K.T. Taha, Md. Amir, M.A. Al-Messiere, A. Baykal, S. Karakus, A. Kilislioglu, Development of novel nano-ZnO enhanced polymeric membranes for water purification. J. Inorg. Organometall. Polym. Mater. 29, 979–988 (2019)

    Article  CAS  Google Scholar 

  9. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. 30, 9520–9530 (2019)

    CAS  Google Scholar 

  10. M. Tosun, L. Arda, Effect of temperature and film thickness on structural and mechanical properties of c-axis oriented Zn0.95Mg0.05O thin films. Ceram. Int. 45(13), 16234–16243 (2019)

    Article  CAS  Google Scholar 

  11. I. Gonzalez-Valls, M. Lira-Cantu, Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2(1), 19–34 (2009)

    Article  CAS  Google Scholar 

  12. E. Asikuzun, A. Donmez, L. Arda, O. Cakiroglu, O. Ozturk, D. Akcan, M. Tosun, S. Ataoglu, C. Terzioglu, Structural and mechanical properties of (Co/Mg) co-doped nano ZnO. Ceram. Int. 41, 6326–6334 (2015)

    Article  CAS  Google Scholar 

  13. K.S. Syed Ali, R. Saravanan, S. Israel, M. Acikgoz, L. Arda, Localized ferromagnetic charge ordering through charge density analysis in nano sized diluted magnetic semiconductor Co2+:ZnO. Physica B 405, 1763–1769 (2010)

    Article  CAS  Google Scholar 

  14. M. Tosun, S. Ataoglu, L. Arda, O. Ozturk, E. Asikuzun, D. Akcan, O. Cakiroglu, Structural and mechanical properties of ZnMgO nanoparticles. Mater. Sci. Eng. A 590, 416–422 (2014)

    Article  CAS  Google Scholar 

  15. L. Khomenkova, V.I. Kushnirenko, M.M. Osipyonok et al., Structural, electrical and luminescent properties of ZnO: Li films fabricated by screen-printing method on sapphire substrate. Phys Status Solidi C 12, 1144–1147 (2015)

    Article  CAS  Google Scholar 

  16. I.V. Markevich, T.R. Stara, V.O. Bondarenko, Influence of Mg content on defect-related luminescence of undoped and doped MgZnO ceramics. Semicond. Phys. Quantum Electron. Optoelectron. 18, 344–348 (2015)

    Article  CAS  Google Scholar 

  17. S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−x O alloy films Appl. Phys. Lett. 80, 1529–1531 (2002)

    CAS  Google Scholar 

  18. V. Srikant, V. Sergo, D.R. Clarke, Epitaxial aluminum-doped zinc-oxide thin film on saphire: effect of substrate orientation. J. Am. Cerm. Soc. 78, 1931–1934 (1995)

    Article  CAS  Google Scholar 

  19. S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Visible light-induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3. Appl. Energy. 87, 2230–2236 (2010)

    Article  CAS  Google Scholar 

  20. R. Dom, R. Subasri, K. Radha, P.H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun. 151, 470–473 (2011)

    Article  CAS  Google Scholar 

  21. S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, T. Ishihara, Preparation of p-Type CaFe2O4 photocathodes for producing hydrogen from water. J. Am. Chem. Soc. 132, 17343 (2010)

    Article  CAS  Google Scholar 

  22. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, Mechanisms behind green photoluminescence in ZnO phosphor powders. Appl Phys. 79, 7983–7990 (1996)

    Article  CAS  Google Scholar 

  23. M. Andres-Vergés, A. Mifsud, C.J. Serna, Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J. Chem. Soc. Faraday Trans. 86, 959–963 (1990)

    Article  Google Scholar 

  24. T. Pandiyarajan, R. Udayabhaskar, B. Karthikeyan, Role of Fe doping on structural and vibrational properties of ZnO nanostructures. Appl. Phys. A 107, 411–419 (2012)

    Article  CAS  Google Scholar 

  25. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Doping effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles. Microelectron. Eng. 89, 129–132 (2012)

    Article  CAS  Google Scholar 

  26. L. Arda, M. Acikgoz, N. Dogan, D. Akcan, O. Cakiroglu, Synthesis, characterization and ESR studies of Zn1-x Co x O nanoparticles. J. Supercond. Novel Magn. 27(3), 799–804 (2014)

    Article  CAS  Google Scholar 

  27. Z.K. Heiba, L. Arda, M.B. Mohamed, Structural and magnetic properties of Zn0.95 Cr0.05 O annealed at different temperatures. J. Magn. Magn. Mater. 389, 153–156 (2015)

    Article  CAS  Google Scholar 

  28. S.D. Senol, O. Ozturk, C. Terzioğlu, Effect of boron doping on the structural, optical and electrical properties of ZnO nanoparticles produced by the hydrothermal method. Ceram. Int. 41(9), 11194–11201 (2015)

    Article  CAS  Google Scholar 

  29. J. Li, L. Zhang, J. Zhu, W. Hao, Aligned ZnO: Co nanorod arrays: electrophoretic deposition fabrication and magnetic manipulation. Ceram. Int. 41, 3456–3460 (2015)

    Article  CAS  Google Scholar 

  30. R. He, B. Tan, C. Ton-Hhat, M. Phillips, T. Tsuzuki, Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation. J. Nanoparticle Res. 15, 2030 (2013)

    Article  CAS  Google Scholar 

  31. S.D. Senol, C. Boyraz, E. Ozugurlu, A. Gungor, L. Arda, Band gap engineering of Mg doped ZnO nanorods prepared by a hydrothermal method. Cryst. Res. Technol. 3, 1800233 (2019)

    Article  CAS  Google Scholar 

  32. L. Arda, The effects of Tb doped ZnO nanorod: An EPR study. J. Magn. Magn. Mater. 475, 493–501 (2019)

    Article  CAS  Google Scholar 

  33. D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong, Z. Zhang, Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 72, 1966 (1998)

    Article  CAS  Google Scholar 

  34. X.F. Duan, C.M. Lieber, Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188 (2000)

    Article  CAS  Google Scholar 

  35. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, 1–x Cax Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers Appl. Phys. Lett. 61, 2051 (1992)

    CAS  Google Scholar 

  36. S.D. Senol, A. Guler, C. Boyraz, L. Arda, Preparation structure and magnetic properties of Mn-doped ZnO nanoparticles prepared by hydrothermal method. J. Supercond. Nov. Magn. (2019). https://doi.org/10.1007/s10948-019-5030-7

    Article  Google Scholar 

  37. J. Liu, F. Yi, Fabrication, and properties of ZnO nanorods on silicon nanopillar surface for gas sensor application. J Mater Sci 30, 11404–11411 (2019)

    CAS  Google Scholar 

  38. T.L. Lamson, S. Khan, Z. Wang et al., Patterned Synthesis of ZnO nanorod arrays for nanoplasmonic waveguide applications. Opt. Commun. 411, 53–58 (2018)

    Article  CAS  Google Scholar 

  39. H. Fujiwara, T. Suzuki, R. Niyuki et al., ZnO nanorod array random lasers fabricated by a laser-induced hydrothermal synthesis. New J. Phys. 18, 103046 (2016)

    Article  CAS  Google Scholar 

  40. T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi B 131, 415 (1985)

    Article  CAS  Google Scholar 

  41. N.M. Ravindra, S. Auluck, V.K. Srivastava, On the penn gap in semiconductors. Physica Status Solidi (b) 93(2), 155–160 (1979). https://doi.org/10.1002/pssb.2220930257

    Article  Google Scholar 

  42. R.R. Reddy, S. Anjaneyulu, Analysis of the Moss and Ravindra relations. Phys. Status Solidi B 174, 91 (1992)

    Article  Google Scholar 

  43. V. Kumar, J. Singh, Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phys. 48, 571 (2010)

    CAS  Google Scholar 

  44. P. Hervé, L. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35, 609 (1994)

    Article  Google Scholar 

  45. S.D. Senol, B. Yalcin, E. Ozugurlu, L. Arda, Structure, microstructure, optical and photocatalytic properties of Mn-doped ZnO nanoparticles. Mater. Res. Express 7, 015079 (2020)

    Article  CAS  Google Scholar 

  46. S.D. Senol, E. Ozugurlu, L. Arda, Synthesis, structure and optical properties of (Mn/Cu) co-doped ZnO nanoparticles. J. Alloys Compd. 822(5), 153514 (2020)

    Article  CAS  Google Scholar 

  47. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds A and B (Wiley, New York, 1997)

    Google Scholar 

  48. M. Arshad, A. Azam, A.S. Ahmea, S. Mollah, A.H. Naqvi, J. Alloys Compd. 509, 8378–8381 (2011)

    Article  CAS  Google Scholar 

  49. M. Ashokkumar, S. Muthukumaran, Structural, morphological and spectroscopic investigation of Mn doped Zn0.96Cu0.04O nanoparticles. J. Mater. Sci. 26, 1225–1233 (2015)

    CAS  Google Scholar 

  50. F. Naccarato, F. Ricci, J. Suntivich, G. Hautier, L. Wirtz, G.-M. Rignanese, Searching for materials with a high refractive index and wide band gap: a first-principles high-throughput study. Phys. Rev. Mater. 3, 044602 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bolu Abant İzzet Baysal University Scientific Research Projects under Project No: BAP- 2018.03.03.1320, Bolu, Turkey, and the Research Fund of Bahcesehir University under Project No: BAP-2021.01.27 and BAP.2019-01.04, Istanbul, Turkey.

Author information

Authors and Affiliations

Authors

Contributions

SDS: Sample Preparation, XRD, FTIR, and UV–VIS diffuse reflectance measurements and discussions, writing—review and editing; LA: writing—original draft preparation, reviewing and editing, XRD, SEM, EDS and optical properties discussions.

Corresponding author

Correspondence to S. D. Senol.

Ethics declarations

Conflict of interest

The authors declare that there is no potential conflicts of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors. In this experiment, we did not collect any samples of human and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senol, S.D., Arda, L. The effects of Ni/Cu co-doped ZnO nanorods: structural and optoelectronic study. J Mater Sci: Mater Electron 33, 20740–20755 (2022). https://doi.org/10.1007/s10854-022-08884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08884-5

Navigation