Skip to main content
Log in

Optimization of sintering temperature for realizing enhanced magnetic properties of YFeO3 ceramic derived from the sol-gel technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present communication, we are reporting the optimization of sintering temperature to realize the highest magnetization value from yttrium orthoferrite (YFeO3) ceramics derived from the sol-gel technique in presence of tartaric acid as a complex agent. For this, YFeO3 (YFO) samples were fabricated at various sintering temperatures (950 °C, 1050 °C, and 1150 °C) with an equal duration of time (5 h). YFO was obtained as a crystalline phase at different sintering temperatures, and structural analysis indicates a pure orthorhombic perovskite structure with Pmna space group of mmm point group. Additionally, a significant influence on the crystallite size, optical and magnetic properties was observed. An increase in crystallite size with an increasing sintering temperature was observed through a scanning electron microscopy study. The highest magnetization value has been observed for the sample sintered at 1050 °C/5 h. The observed magnetization value and coercive field were found to be 5.12 emu.g− 1and 54.19 Oe. A decrease in the optical bandgap of YFO material was observed with an increase in sintering temperature. Concerning the highest magnetic properties of the YFO material sintered at 1050 °C/5 h is anticipated to be of potential use in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declares that all the data generated or analyzed during this study are included in this manuscript.

References

  1. N.A. Spaldin, Multiferroics: past, present, and future. MRS Bull. 42, 385–390 (2017). https://doi.org/10.1557/mrs.2017.86

    Article  Google Scholar 

  2. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008). https://doi.org/10.1063/1.2836410

    Article  CAS  Google Scholar 

  3. S.M. Yusuf, A. Kumar, J.V. Yakhm, Temperature- and magnetic-field-controlled magnetic pole reversal in a molecular magnetic compound. Appl. Phys. Lett. 95, 182506 (2009). https://doi.org/10.1063/1.3259652

    Article  CAS  Google Scholar 

  4. S. Cao, H. Zhao, B. Kang, J. Zhang, W. Ren, Temperature induced Spin Switching in SmFeO3 Single Crystal. Sci. Rep. 4, 5960 (2014). https://doi.org/10.1038/srep05960

    Article  CAS  Google Scholar 

  5. H. Schmid, Some symmetry aspects of ferroics and single phase multiferroics. J. Phys. : Condens. Matter 20, 434201 (2008). https://doi.org/10.1088/0953-8984/20/43/434201

    Article  CAS  Google Scholar 

  6. J. Arumugam, A.A. Irudayaraj, A.D. Raj et al., Exploring and fine tuning the properties of one dimensional Bi2S3 nanorods. J. Alloys Compd. 902, 163785 (2022). https://doi.org/10.1016/j.jallcom.2022.163785

    Article  CAS  Google Scholar 

  7. R. Vinayagam, Y. Patnaik, P. Brijesh et al., Superparamagnetic hematite spheroids synthesis, characterization, and catalytic activity. Chemosphere 294, 133730 (2022). https://doi.org/10.1016/j.chemosphere.2022.133730

    Article  CAS  Google Scholar 

  8. J. Arumugam, A. George, A.D. Raj et al., Improved Ag doped Bi2S3 nanowire-based photodiode: fabrication and performance. Mater. Lett. 302, 130403 (2021). https://doi.org/10.1016/j.matlet.2021.130403

    Article  CAS  Google Scholar 

  9. G. Jayakumar, A.A. Irudayaraj, A.D. Raj, S.J. Sundaram, K. Kaviyarasu, Electrical and magnetic properties of nanostructured Ni doped CeO2 for optoelectronic applications. J. Phys. Chem. Solids 160, 110369(2022)

    Article  CAS  Google Scholar 

  10. J. Arumugam, A. George, A.D. Raj et al., Construction and characterization of photodiodes prepared with Bi2S3 nanowires. J. Alloys Compd. 863, 158681 (2021). https://doi.org/10.1016/j.jallcom.2021.158681

    Article  CAS  Google Scholar 

  11. R. Harikrishnan. G. Mani, M. Mani, K. Kaviyarasu, I. Baskaran, One step microwave assisted synthesis of praseodymium orthoferrite nanoparticles: Rietveld refinement phase matching, optical, and magnetic property analysis. Phys. B: Condens. Matter 639, 414019 (2022). https://doi.org/10.1016/j.physb.2022.414019

    Article  CAS  Google Scholar 

  12. T.D. Rao, K.R. Kandula, A. Kumar, S. Asthana, Improved magnetization and reduced leakage current in Sm and Sc co-substituted BiFeO<background-color:#CCCCFF;usub>3</background-color:#CCCCFF;usub>. J Appl. Phys. 123, 244104 (2018). https://doi.org/10.1063/1.5023720

    Article  CAS  Google Scholar 

  13. N.Q. Minh, C.F. Cells, J. Am. Ceram. Soc. 76, 563–588 (1995). 563–588 https://doi.org/10.1111/j.1151-2916.1993.tb03645.x

    Article  Google Scholar 

  14. A.I. Prasad, A.K. Parchur, R.R. Juluri, N. Jadhav, B.N. Pandey, R.S. Ningthoujam, R.K. Vats, Bi-functional properties of Fe3O4@YPO4:Eu hybrid nanoparticles: hyperthermia application. Dalton Trans. 42, 4885–4896 (2013). https://doi.org/10.1039/C2DT32508J

    Article  CAS  Google Scholar 

  15. Y. Ma, M. Chen, Y.Q. Lin, Relaxorlike dielectric behavior and weak ferromagnetism in YFeO3 ceramics. J. Appl. Phys. 103, 124111 (2008). https://doi.org/10.1063/1.2947601

    Article  CAS  Google Scholar 

  16. G. King, and P.M. Woodward Cation ordering in perovskites. J. Mater. Chem. 20, 5785–5796 (2010). https://doi.org/10.1039/B926757C

    Article  CAS  Google Scholar 

  17. N. Singh, J.Y. Rhee, S. Auluck, Electronic and magneto-optical properties of rare-earth orthoferrites RFeO3 (R = Y, Sm, Eu, Gd and Lu). J. Korean Physical Society 53, 806–811 (2008). https://doi.org/10.3938/jkps.53.806

    Article  CAS  Google Scholar 

  18. H. Shen, J. Xu, A. Wu, J. Zhao, M. Shi, Magnetic and thermal properties of perovskite YFeO<background-color:#CCCCFF;usub>3</background-color:#CCCCFF;usub>. single Cryst. Mater. Sci. Eng. B 157, 77–80 (2009). https://doi.org/10.1016/j.mseb.2008.12.020

    Article  CAS  Google Scholar 

  19. S. Madolappa, B. Ponraj, R. Bhimireddi, K.B.R. Varma, Enhanced magnetic and dielectric properties of Ti-doped YFeO3 ceramics. J Am. Ceramic Soc. 100, 2641–2650 (2017). https://doi.org/10.1111/jace.14809

    Article  CAS  Google Scholar 

  20. X. Yuan, Y. Sun, M. Xu, Structure and magnetic properties of Y1 – x Lu x FeO3 (0 ≤ x ≤ 1) ceramics. J. Appl. Phys. 111, 053911 (2012). https://doi.org/10.1063/1.3691243

    Article  CAS  Google Scholar 

  21. V.G. Nair, A. Das, V. Subramanian, P.N. Santosh, Magnetic structure and magnetodielectric effect of YFe0.5Cr0.5O3. J. Appl. Phys. 113, 213907 (2013). https://doi.org/10.1063/1.4808459

    Article  CAS  Google Scholar 

  22. P.S.J. Bharadwaj, S. Kundu, V.S. Kollipara, K.B.R. Varma, Synergistic effect of trivalent (Gd<background-color:#CCCCFF;usup>3+, Sm<background-color:#CCCCFF;usup>3+) and highvalent (Ti<background-color:#CCCCFF;usup>4+) co-doping on antiferromagnetic YFeO<background-color:#CCCCFF;usub>3. RSC Adv. 10, 22183 (2020). https://doi.org/10.1039/D0RA02532A

    Article  CAS  Google Scholar 

  23. M. Solórzano, A. Durán, R. López, J. Mata, Falconi1Structural characterization, dielectric, and magnetic properties of Ti–doped YFeO<background-color:#CCCCFF;usub>3</background-color:#CCCCFF;usub>. multiferroic compound, J. Mater. Sci: Mater. Electron 31, 14478–14486 (2020). https://doi.org/10.1007/s10854-020-04007-0 R.

    Article  CAS  Google Scholar 

  24. D.H.T. Pham, L.T.T. Nguyen, V.O. Mittova et al., Correction to: Structural, optical and magnetic properties of Sr and Ni co-doped YFeO nanopart. prepared simple co-precipitation method.  J. Mater. Sci.: Mater. Electron. 33, 14368–14369 (2022). https://doi.org/10.1007/s10854-022-08495-0

    Article  CAS  Google Scholar 

  25. Y. Li, Y. Ma, Z. Wang, H. Liu, X. Wang, Y. Dong, W. Qian, Morphologically distinctive YFeO near-infrared Reflect. ferromagnetic characteristics.  J. Mater. Sci.: Mater. Electron. 33, 11318–11331 (2022). https://doi.org/10.1007/s10854-022-08105-z

    Article  CAS  Google Scholar 

  26. O. Rosales-González, F.S. Jesús, C.A. Cortés-Escobedo, A.M. Bolarín-Miró, Crystal structure and multiferroic behavior of perovskite YFeO<background-color:#CCCCFF;usub>3</background-color:#CCCCFF;usub>. Ceram. Int. 44, 15298–15303 (2018). https://doi.org/10.1016/j.ceramint.2018.05.175

    Article  CAS  Google Scholar 

  27. P.S.J. Bharadwaj, V.S. Kollipar, Evaluating the structure-property correlation in Y (0 ≤ x ≤ 0.15) perovskites. Ceram. Int. 47, 30797–30806 (2021). https://doi.org/10.1016/j.ceramint.2021.07.260

    Article  CAS  Google Scholar 

  28. M.K. Singh, H.M. Jang, H. Gupta, R.S. Katiyar, Polarized Raman scattering and lattice eigenmodes of antiferromagnetic NdFeO3. J. Raman Spectroscopy 39, 842–848 (2008). https://doi.org/10.1002/jrs.1923

    Article  CAS  Google Scholar 

  29. S. Tukaram, R. Bhimireddi, K.B.R. Varma, Nano/micro Sr crystallites: size dependent structural, second harmonic and piezoelectric properties. Mate. Sci. Eng. B 211, 101–109 (2016). https://doi.org/10.1016/j.mseb.2016.06.003

    Article  CAS  Google Scholar 

  30. J.H. Jung, M. Matsubara, T. Arima, J.P. He, Y. Kaneko, Y. Tokura, Optical magnetoelectric effect in the polar GaFeO3 ferrimagnet. Phys. Rev. Lett. 93, 037403 (2004). https://doi.org/10.1103/PhysRevLett.93.037403

    Article  CAS  Google Scholar 

  31. P. Kubelka, Errata: new contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38, 448–457 (1948). https://doi.org/10.1364/JOSA.38.000448

    Article  CAS  Google Scholar 

  32. T. Patri, R. Patangi, K.R. Kandula et al., Effect of W/Co co-substitution on structural, microstructural, magnetic and electrical properties of Bi aurivillius compound. J. Mater. Sci.: Mater. Electron. 31, 874–884 (2020). https://doi.org/10.1007/s10854-019-02593-2

    Article  CAS  Google Scholar 

  33. M. Wang, T. Wanga, S.H. Song, M. Ravia, R.C. Liu, S.S. Ji, Effect of calcination temperature on structural, magnetic and optical properties of multiferroic YFeO3 nanopowders synthesized by a low temperature solid-state reaction. Ceram. Int. 43, 10270–10276 (2017). https://doi.org/10.1016/j.ceramint.2017.05.056

    Article  CAS  Google Scholar 

  34. W.E. Mahmoud, A.M. Al-Amri, S.J.Yaghmour, Low temperature synthesis of CdSe capped 2-mercaptoethanol quantum dots. Opt. Mater. 34, 1082–1086 (2012). https://doi.org/10.1016/j.optmat.2012.01.001

    Article  CAS  Google Scholar 

  35. F.S. Al-Hazmi, A.A. Al-Ghamdi, L.M. Bronstein, L.S. Memesh, F.S. Shokr, M. Hafez, The influence of sintering temperature on the structure, optical and magnetic properties of Yttrium iron oxide YFeO3 prepared via Lα-alanine assisted combustion method. Ceram. Int. 43, 8133–8138 (2017). https://doi.org/10.1016/j.ceramint.2017.03.137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Kumara Raja Kandula for his support in structural refinement. One of the authors (RB) acknowledges the Sri Sathya Sai Central Trust for providing all the research facilities at Central Research Instruments Facility (CRIF) and financial support through the Research Associate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

ChV involved in sample preparation and their structural characterization and original draft preparation. DRSR contributed to equal-conceptualization and reviewing and editing the manuscript. RB contributed to equal-conceptualization, structural characterization and analyses, and reviewing and editing the manuscript.

Corresponding authors

Correspondence to D. Rama Sekhara Reddy or Rajasekhar Bhimireddi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatrao, C., Reddy, D.R.S. & Bhimireddi, R. Optimization of sintering temperature for realizing enhanced magnetic properties of YFeO3 ceramic derived from the sol-gel technique. J Mater Sci: Mater Electron 33, 20731–20739 (2022). https://doi.org/10.1007/s10854-022-08883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08883-6

Navigation