Skip to main content
Log in

Scavenging solvent-mediated photocatalytic conversion of Co(III) to Co(II) by synergistic interaction of SnO2/ZnFe2O4 nanocomposites under ultraviolet illumination

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic, cost-effective, heterojunction SnO2/ZnFe2O4 nanocomposites were synthesized via. simple one-pot hydrothermal technique, and its phase formation, microstructure, morphology, chemical states and magnetism were examined by various characteristics. The photoconversion of mixed ligand involved cis-[CoIII(en)2(Im)Cl]Cl2 by SnO2/ZnFe2O4 nanocomposite showed efficient catalytic activity compared to the bare SnO2 and ZnFe2O4 nanoparticles under the wavelength of 254 nm and 365 nm in neat water and binary solvents system. SnO2/ZnFe2O4 heterojunction photocatalyst showed enhanced electron donor–acceptor capacitance and diminished the recombination of electron–hole (e/h+) pairs and efficient generation of photogenerated reactive species. The rate constant (k) of SnO2/ZnFe2O4 (0.0540 s−1) is higher than that of the SnO2 (0.0160 s−1) and ZnFe2O4 (0.157 s−1) in H2O/PriOH (70:30%) than in remain solvents system in catalytic conversion of Co(III)/(II) system. The photoactive mechanism of Co(III) complex by SnO2/ZnFe2O4 nanocomposite and its corresponding bare nanoparticles were discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data support of current findings is available from the corresponding author on reasonable request.

References

  1. C.M. Liu, X.T. Zu, W.L. Zhou, J. Phys.: Condens. Matter 18, 6001 (2006)

    CAS  Google Scholar 

  2. T.J. Kempa, R.W. Day, S.-K. Kim, H.-G. Park, C.M. Lieber, Energy Environ. Sci. 6, 719–733 (2013)

    Article  CAS  Google Scholar 

  3. C.B. Fitzgerald, M. Venkatesan, A.P. Douvalis, S. Huber, J.M.D. Coey, T.J. Bakas, Appl. Phys. 95, 7390 (2004)

    Article  CAS  Google Scholar 

  4. C.-H. Kuo, Y.-C. Yang, S. Gwo, M.H. Huang, J. Am. Chem. Soc. 133, 1052–1057 (2011)

    Article  CAS  Google Scholar 

  5. Z. Jian, H. Ru, L. Xiaoheng, Nanotechnology 24, 505401 (2013)

    Article  CAS  Google Scholar 

  6. J. Jiang, Y.Y. Li, J.P. Liu, X.T. Huang, C.Z. Yuan, X.W. Lou, Adv. Mater. 24, 5166–5180 (2012)

    Article  CAS  Google Scholar 

  7. L.L. Xu, J.G. Guan, W.D. Shi, ChemCatChem 4, 1353–1359 (2012)

    Article  CAS  Google Scholar 

  8. E. Casbeer, V.K. Sharma, X.-Z. Li, Sep. Purif. Technol. 87, 1–14 (2012)

    Article  CAS  Google Scholar 

  9. H.C. Zhou, S. Kitagawa, Chem. Soc. Rev. 43, 5415–5418 (2014)

    Article  CAS  Google Scholar 

  10. M. Bundschuh, F. Seitz, R.R. Rosenfeldt, R. Schulz, Freshw. Biol. 61, 2185–2196 (2016)

    Article  Google Scholar 

  11. D. Venieri, A. Fraggedaki, M. Kostadima, E. Chatzisymeon, V. Binas, A. Zachopoulos, G. Kiriakidis, D. Mantzavinos, Appl. Catal. B 154, 93–101 (2014)

    Article  CAS  Google Scholar 

  12. K.R. Lestari, P. Yoo, D.H. Kim, B.C. Liu, B.W. Lee, J. Korean Phys. Soc. 66, 651–655 (2015)

    Article  CAS  Google Scholar 

  13. G.X. Tong, W.H. Wu, J.G. Guan, H.S. Qian, J.H. Yuan, W. Li, J. Alloys Compd. 509, 4320–4326 (2011)

    Article  CAS  Google Scholar 

  14. S. Xie, K. Ouyang, Y. Lao, P. He, Q. Wang, J. Colloid Interface Sci. 493, 198–205 (2017)

    Article  CAS  Google Scholar 

  15. S. Lin, D. Li, J. Wu, X. Li, S. Akbar, Sens. Actuators B 156, 505–509 (2011)

    Article  CAS  Google Scholar 

  16. Y.S. Fu, X. Wang, Ind. Eng. Chem. Res. 50, 7210–7218 (2011)

    Article  CAS  Google Scholar 

  17. Q. Han, S. Zhou, L. Xu, X. Sun, K. Liu, H. Jia, H. Yuan, J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06785-7

    Article  Google Scholar 

  18. F. Zhang, X. Li, Q. Zhao, D. Zhang, ACS Sustain. Chem. Eng. 4, 4554–4562 (2016)

    Article  CAS  Google Scholar 

  19. Y. Yao, Y. Cai, F. Lu, J. Qin, F. Wei, C. Xu, S. Wang, Ind. Eng. Chem. Res. 53(44), 17294–17302 (2014)

    Article  CAS  Google Scholar 

  20. K.K. Das, D.P. Sahoo, S. Mansingh, K. Parida, ACS Omega 6, 30401–30418 (2021)

    Article  CAS  Google Scholar 

  21. G.Y. Zhang, Y.Q. Sun, D.Z. Gao, Y.Y. Xu, Mater. Res. Bull. 45, 755–760 (2010)

    Article  CAS  Google Scholar 

  22. C.L. Wang, X. Tan, J. Yan, B. Chai, J. Li, S. Chen, Appl. Surf. Sci. 396, 780–790 (2017)

    Article  CAS  Google Scholar 

  23. L. Kong, Z. Jiang, T. Xiao, L. Lu, M.O. Jones, P.P. Edwards, Chem. Commun. 47, 5512–5514 (2011)

    Article  CAS  Google Scholar 

  24. S. Dursun, I. Cihan Kaya, V. Kalem, H. Akyildiz, Dalton Trans. 47, 14662–14678 (2018)

    Article  CAS  Google Scholar 

  25. Y.-C. Liang, Y. Chao, RSC Adv. 9, 6482 (2019)

    Article  CAS  Google Scholar 

  26. L. Zhang, H. Zhang, H. Huang, Y. Liu, Z. Kang, New J. Chem. 36, 1541–1544 (2012)

    Article  CAS  Google Scholar 

  27. P.A. Scattergood, A. Sinopoli, P.I.P. Elliott, Coord. Chem. Rev. 350, 136–154 (2017)

    Article  CAS  Google Scholar 

  28. M.G. Basallote, M. Martínez, M. Vázquez, Dalton Trans. 43, 11048–11058 (2014)

    Article  CAS  Google Scholar 

  29. S. Osinsky, I. Levitin, A. Sigan, L. Bubnovskaya, A. Sigan, I. Ganusvich, A. Kovelskaya, N. Valvoskaya, L. Campenella, P. Wardman, Exp. Oncol. 26, 140–144 (2004)

    CAS  Google Scholar 

  30. A. Panja, P. Guionneau, Dalton Trans. 42, 5068–5075 (2013)

    Article  CAS  Google Scholar 

  31. H. Fang, B. Xu, X. Li, D.L. Kuhn, Z. Zachary, G. Tian, V. Chen, R. Chu, B.G. DeLacy, Y. Rao, H.-L. Dai, Langmuir 33, 7036–7042 (2017)

    Article  CAS  Google Scholar 

  32. G. Louit, S. Foley, J. Cabillic, H. Coffigny, F. Taran, A. Valleix, J.P. Renault, S. Pin, Radiat. Phys. Chem. 72, 119–124 (2005)

    Article  CAS  Google Scholar 

  33. B. Zimmer-Gasser, K.C. Dash, Inorg. Chim. Acta 55, 43–46 (1981)

    Article  CAS  Google Scholar 

  34. X. Liu, H. Zheng, Y. Li, W. Zhang, J. Mater. Chem. C 1, 329–337 (2013)

    Article  CAS  Google Scholar 

  35. M.T. Maurette, A.M. Braun, E. Oliveros, Photochemical Technology (Wiley, Chichester, 1991)

    Google Scholar 

  36. Y. Li, X. Lv, J. Lu, J. Li, J. Phys. Chem C 114, 21770–21774 (2010)

    Article  CAS  Google Scholar 

  37. M. Wang, L. Sun, J. Cai, P. Huang, Y. Su, C. Lin, J. Mater. Chem. A 1, 12082–12087 (2013)

    Article  CAS  Google Scholar 

  38. L. Yao, X. Hou, S. Hu, J. Wang, M. Li, C. Su, M.O. Tade, Z. Shao, X. Liu, J. Power Sources 258, 305–313 (2014)

    Article  CAS  Google Scholar 

  39. Y. Huang, D. Wu, S. Han, S. Li, L. Xiao, F. Zhang, X. Feng, Chemsuschem 6, 1510–1515 (2013)

    Article  CAS  Google Scholar 

  40. L.Z. Liu, T.H. Li, X.L. Wu, J.C. Shen, P.K. Chu, J. Raman Spectrosc. 43, 1423–1426 (2012)

    Article  CAS  Google Scholar 

  41. B. Jiang, C. Han, B. Li, Y. He, Z. Lin, ACS Nano 10, 2728–2735 (2016)

    Article  CAS  Google Scholar 

  42. L. Zhang, Y. Heb, P. Ye, Y. Wu, T. Wu, J. Alloys Compd. 549, 105–113 (2013)

    Article  CAS  Google Scholar 

  43. M.H. Carvalho, E.C. Pereira, A.J.A. de Oliveira, RSC Adv. 8, 3958–3963 (2018)

    Article  CAS  Google Scholar 

  44. L. Yao, X. Hou, S. Hu, X. Tang, X. Liu, Q. Ru, J. Alloys Compd. 585, 398–403 (2014)

    Article  CAS  Google Scholar 

  45. Q. Zhang, P. Liu, C. Miao, Z. Chen, C.M. Lawrence Wu, C.-H. Shek, RSC Adv. 5, 39285–39290 (2015)

    Article  CAS  Google Scholar 

  46. Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, Adv. Funct. Mater. 20, 2165–2174 (2010)

    Article  CAS  Google Scholar 

  47. M. Kwoka, L. Ottaviano, J. Szuber, Thin Solid Films 515, 8328–8331 (2007)

    Article  CAS  Google Scholar 

  48. T.B. Nguyen, R.A. Doong, RSC Adv. 7, 50006–50016 (2017)

    Article  CAS  Google Scholar 

  49. E.M.E. Maghraby, Phys. B Condens. Matter 405, 2385–2389 (2010)

    Article  CAS  Google Scholar 

  50. X. Li, Y. Hou, Q. Zhao, L. Wang, J. Colloid Interface Sci. 358, 102–108 (2011)

    Article  CAS  Google Scholar 

  51. H. Song, L. Zhu, Y. Li, Z. Lou, M. Xiao, Z. Ye, J. Mater. Chem. A 3, 8353–8360 (2015)

    Article  CAS  Google Scholar 

  52. J.G. Yu, L.F. Qi, M. Jaroniec, J. Phys. Chem. C 114, 13118–13125 (2010)

    Article  CAS  Google Scholar 

  53. Z. Liu, D.D. Sun, P. Guo, J.O. Leckie, Nano Lett. 7, 1081–1085 (2007)

    Article  CAS  Google Scholar 

  54. C.G. Anchieta, A. Cancelier, M.A. Mazutti, S.L. Jahn, R.C. Kuhn, A. Gündel, O.C. Filho, E.L. Foletto, Materials 7, 6281–6290 (2014)

    Article  Google Scholar 

  55. C. Yang, T. Wang, P. Liu, Curr. Opin. Solid State Mater. Sci. 13, 112–118 (2009)

    Article  CAS  Google Scholar 

  56. K.-T. Lee, X.-F. Chuah, Y.-C. Cheng, S.-Y. Lu, J. Mater. Chem. A 3, 18578–18585 (2015)

    Article  CAS  Google Scholar 

  57. C. Karunakaran, S. Sakthi Raadha, P. Gomathisankar, P. Vinayagamoorthy, Superlattices Microstruct. 60, 487–499 (2013)

    Article  CAS  Google Scholar 

  58. N.H. Hong, N. Poirot, J. Sakai, Phys. Rev. B 77, 033205 (2008)

    Article  CAS  Google Scholar 

  59. N. Guy, M. Ozacar, Int. J. Hydrog. Energy. 43, 8779–8793 (2018)

    Article  CAS  Google Scholar 

  60. Y. Zou, X. Wang, Y. Ai, Y. Liu, J. Li, Y. Ji, X. Wang, Environ. Sci. Technol. 50, 3658–3667 (2016)

    Article  CAS  Google Scholar 

  61. S. Guo, P. Jiao, Z. Dan, N. Duana, G. Chena, J. Zhang, J. Chem. Eng. 317, 999–1011 (2017)

    Article  CAS  Google Scholar 

  62. L. Chen, D. Zhao, S. Chen, X. Wang, C. Chen, Ind. Eng. Chem. Res. 55, 568–578 (2016)

    Article  CAS  Google Scholar 

  63. E.-J. Kim, C.-S. Lee, Y.-Y. Chang, Y.-S. Chang, Appl. Mater. Interfaces 5, 9628–9634 (2013)

    Article  CAS  Google Scholar 

  64. F. Lian, B. Sun, X. Chen, L. Zhu, Z. Liu, B. Xing, Environ. Pollut. 204, 306–312 (2015)

    Article  CAS  Google Scholar 

  65. R.E. Kitson, Anal. Chem. 22, 664–667 (1950)

    Article  CAS  Google Scholar 

  66. W. Deng, H. Zhao, F. Pan, X. Feng, B. Jung, A. Abdez-Wahab, B. Batchelor, Y. Li, Environ. Sci. Technol. 51, 13372–13379 (2017)

    Article  CAS  Google Scholar 

  67. S. Acharya, S. Mansingh, K.M. Parida, Inorg. Chem. Front. 4, 1022–1032 (2017)

    Article  CAS  Google Scholar 

  68. W.Q. Cui, H. Wang, Y.H. Liang, J. Chem. Eng. 230, 10–18 (2013)

    Article  CAS  Google Scholar 

  69. S.Y. Chae, S.J. Park, S.G. Han, H. Jung, C.W. Kim, C. Jeong, O.S. Joo, B.K. Min, Y.J. Hwang, J. Am. Chem. Soc. 138, 15673–15681 (2016)

    Article  CAS  Google Scholar 

  70. S. Subudhi, S. Mansingh, G. Swain, A. Behera, D. Rath, K. Parida, Inorg. Chem. 58, 4921–4934 (2019)

    Article  CAS  Google Scholar 

  71. T. Song, Q. He, X. Meng, Z. He, M. Ge, Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-21253-3

    Article  Google Scholar 

  72. X. Meng, Y. Zhuang, H. Tang, C. Lu, J. Alloys Compd. 761, 15–23 (2018)

    Article  CAS  Google Scholar 

  73. H. Czili, A. Horvath, Appl. Catal. B 81, 295–302 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Central Instrumentation Facility (CIF), Pondicherry University, for providing instrumental facilities.

Funding

KA records thanks to the Council of Scientific and Industrial Research-HRDG (EMR Division, No. 01(2953)/18/EMR-II/1.5.2018), New Delhi, for financial support through a major research project.

Author information

Authors and Affiliations

Authors

Contributions

DV designed the project, laboratory work, characterization, write-up and revised manuscript. RS assisted photodegradation experiments. KA supervised the work.

Corresponding author

Correspondence to K. Anbalagan.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10854_2022_8879_MOESM1_ESM.docx

Supplementary data of TEM images of SnO2 and ZnFe2O4 nanoparticles. FT-IR spectra of nanocomposites and its bare components. Life-time analysis, M-H loop curve parameters, The rate constant of surface removal of various adsorbents. Time repetitive scan spectra of photodegradation of complex by catalysts under UV light irradiation (λ= 254 nm & 365 nm) in various solvent medium at room temperature. Co(II) confirmation analysis by Kittson’s method. Supplementary file1 (DOCX 23305 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, D., Silambarasan, R. & Anbalagan, K. Scavenging solvent-mediated photocatalytic conversion of Co(III) to Co(II) by synergistic interaction of SnO2/ZnFe2O4 nanocomposites under ultraviolet illumination. J Mater Sci: Mater Electron 33, 20678–20695 (2022). https://doi.org/10.1007/s10854-022-08879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08879-2

Navigation