Skip to main content
Log in

Facile synthesis of reduced graphene oxide from Azadirachta indica for optical power limiting applications: an eco-friendly approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) was synthesized successfully from dead leaves of neem trees using a novel synthesis method comprising combustion, washing, and drying. The synthesized carbonaceous material was subjected to systematic characterization analysis. The rGO material was subjected to X-ray powder diffraction analysis to determine the grain size and other structural parameters. The existence of defect and graphitic band was confirmed by FT-Raman analysis. The presence of a 2D band around 2700 cm−1 indicated the formation of multi-layered graphene. SEM analysis was used to examine the structural morphology of the synthesized material. FTIR spectra revealed the information about the spectral properties of rGO. Compositional analysis revealed the presence of carbon and other contents in the specimen. The title material may be used in optical power limiters, according to z-scan and optical limiting analysis. The results indicate that the cost of synthesis would be significantly reduced when done on a large scale, using this procedure. Furthermore, rGO produced by this method is environmentally friendly, nontoxic and has a high yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are available on request due to privacy or other restrictions.

References

  1. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    Article  CAS  Google Scholar 

  2. E. Frackowiaka, F. Béguin, Carbon 39, 937 (2001)

    Article  Google Scholar 

  3. L. Dai, D.W. Chang, J.B. Baek, W. Lu, Small 8, 1130 (2012)

    Article  CAS  Google Scholar 

  4. X. Zhao, H. Tian, M. Zhu, K. Tian, J.J. Wang, F. Kang, R.A. Outlaw, J. Power Sources 194, 1208 (2009)

    Article  CAS  Google Scholar 

  5. H. Pan, J. Li, Y.P. Feng, Nanoscale Res. Lett. 5, 654 (2010)

    Article  CAS  Google Scholar 

  6. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009)

    Article  CAS  Google Scholar 

  7. S. Flandrois, B. Simon, Carbon 37, 165 (1999)

    Article  CAS  Google Scholar 

  8. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 11, 157 (2006)

    Google Scholar 

  9. C.X. Guoab, C.M. Li, Energy Environ. Sci. 4, 4504 (2011)

    Article  Google Scholar 

  10. S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, J. Am. Chem. Soc. 12, 7720 (2006)

    Article  Google Scholar 

  11. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  CAS  Google Scholar 

  12. A.K. Geim, Science 324, 1530 (2009)

    Article  CAS  Google Scholar 

  13. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012)

    Article  CAS  Google Scholar 

  14. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, J. Tian, Appl. Phys. Lett. 94, 021902 (2009)

    Article  Google Scholar 

  15. M. Feng, H. Zhan, Y. Chen, Appl. Phys. Lett. 96, 033107 (2010)

    Article  Google Scholar 

  16. G.K. Lim, Z.L. Chen, J. Clark, R.G.S. Goh, W.H. Ng, H.W. Tan, R.H. Friend, P.K.H. Ho, L.L. Chua, Nat. Photonics 5, 554 (2011)

    Article  CAS  Google Scholar 

  17. Z. Liu, X. Zhao, X. Zhang, X. Yan, Y. Wu, Y. Chen, J. Tian, J. Phys. Chem. Lett. 2, 1972 (2011)

    Article  CAS  Google Scholar 

  18. M.B.M. Krishna, N. Venkataramaiah, R. Venkatesan, D. Narayana Rao, J. Mater. Chem. 22, 3059 (2012)

    Article  Google Scholar 

  19. X.F. Jiang, L. Polavarapu, S.T. Neo, T. Venkatesan, Q.H. Xu, J. Phys. Chem. Lett. 3, 785 (2012)

    Article  CAS  Google Scholar 

  20. N. Liaros, K. Iliopoulos, M.M. Stylianakis, E. Koudomas, S. Couris, Opt. Mater. 36, 112 (2013)

    Article  CAS  Google Scholar 

  21. P. Chantharasupawong, R. Philip, N.T. Narayanan, P.M. Sudeep, A. Mathkar, P.M. Ajayan, J. Thomas, J. Phys. Chem. C 116, 25955 (2012)

    Article  CAS  Google Scholar 

  22. L.W. Tutt, T.F. Boggess, Prog. Quant. Electron. 17, 299 (1993)

    Article  CAS  Google Scholar 

  23. C. Li, C. Liu, Q. Li, Q. Gong, Chem. Phys. Lett. 400, 569 (2004)

    Article  CAS  Google Scholar 

  24. P.A. Chollet, V. Dumarcher, J.M. Nunzi, P. Feneyrou, P. Baldeck, Nonlinear Opt. 21, 299 (1999)

    CAS  Google Scholar 

  25. J.M. Hales, M. Cozzuol, T.E.O. Screen, H.L. Anderson, J.W.L.W. Tutt, T.F. Boggess, Prog. Quant. Electron 17, 299 (1993)

    Article  Google Scholar 

  26. American National Standard for Safe Use of Lasers ANSI Z136.1–2000.

  27. D. Narayana Rao, C.S. Yelleswarapu, S.R. Kothapalli, D. Rao, B. Kimball, Opt. Express 11, 2848 (2003)

    Article  Google Scholar 

  28. J.M. Hales, M. Cozzuol, T.E.O. Screen, H.L. Anderson, J.W. Perry, Opt. Express 17, 18478 (2009)

    Article  CAS  Google Scholar 

  29. J. Wang, Y. Hernandez, M. Lotya, J.N. Coleman, W.J. Blau, Adv. Mater. 21, 2430 (2009)

    Article  CAS  Google Scholar 

  30. N. Liaros, P. Aloukos, A.K. Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, S. Couris, J. Phys. Chem. C 117, 6842 (2013)

    Article  CAS  Google Scholar 

  31. M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. (2013). https://doi.org/10.1039/C3EE22325F

    Article  Google Scholar 

  32. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)

    Article  Google Scholar 

  33. E. Andrijanto, S. Shoelarta, G. Subiyanto, S. Rifki, AIP Conf. Proc. 1725, 020003 (2016). https://doi.org/10.1063/1.4945457

    Article  Google Scholar 

  34. D. He, Z. Peng, W. Gong, Y. Luo, P. Zhao, L. Kong, RSC Adv. 5, 11966 (2015)

    Article  CAS  Google Scholar 

  35. F.T. Johra, J.-W. Lee, W.-G. Jung, J. Ind. Eng. Chem. 20, 2883 (2014)

    Article  CAS  Google Scholar 

  36. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  37. R.Q. Ye, Y. Chyan, J.B. Zhang, Y.L. Li, X. Han, C. Kittrell, J.M. Tour, Adv. Mater. 29, 1702211 (2017)

    Article  Google Scholar 

  38. G. Muruganandi, M. Saravanan, G. Vinitha, M.B. Jessie Raj, T.C. Sabari Girisun, Chem. Phys. (2017). https://doi.org/10.1016/j.chemphys.2017.03.002

    Article  Google Scholar 

  39. G. Zhang, D. Cao, Z. Liu, G. Li, Acta Chim. Slov. 55, 315 (2008)

    CAS  Google Scholar 

  40. K. Sathyamoorthy, C. Vijayan, M.P. Kothiyal, J. Phys. D Appl. Phys. 40, 6121 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors J. Martin Sam Gnanaraj, G. Satheesh Kumar are grateful to Sri Siva Subramaniya Nadar College of Engineering and Technology, Kalavakkam-603110, for providing Postdoctoral Fellowship and laboratory facilities to carry out this work. The corresponding author, J. Martin Sam Gnanaraj, gratefully acknowledges Dr. Jean Michael Nunzi, Professor, Department of Chemistry, Queen’s University, Canada, for the technical discussions regarding this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JMSG took part in investigation, methodology, data curation, writing—original draft, project administration. GSK involved in investigation, data curation, writing—review and editing. MSP took part in methodology, conceptualization. PR involved in writing—original draft, writing—review & editing. KV took part in investigation, methodology, writing—review & editing. SSK involved in characterization analysis, writing—original draft, writing—review & editing.

Corresponding author

Correspondence to J. Martin Sam Gnanaraj.

Ethics declarations

Conflict of interest

The authors declare that there is no competing and conflict of interest in this research article.

Ethical approval

The authors declare that the principles of ethical and professional conduct have been followed in this research work. It is certified that no human and animal participants were involved in this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanaraj, J.M.S., Kumar, G.S., Pandian, M.S. et al. Facile synthesis of reduced graphene oxide from Azadirachta indica for optical power limiting applications: an eco-friendly approach. J Mater Sci: Mater Electron 33, 20631–20641 (2022). https://doi.org/10.1007/s10854-022-08875-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08875-6

Navigation