Skip to main content
Log in

Reliable epoxy/SiC composite insulation coating for high-voltage power packaging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of a high-voltage power semiconductor device puts forward higher requirements for its electrical insulation materials. In this paper, an epoxy/SiC nonlinear field-dependent conductivity (FDC) coating material was reported to relieve its thermo-mechanical stresses during device operation. It was exciting that the coating could improve both partial discharge performance and insulation reliability for high-voltage power device packaging. This coating technology can improve the partial discharge inception voltage (PDIV) of power devices by a maximum of more than 86.2%. Based on the thermal shocking test, the PDIV of the device still exceeds 10 kV even after 1000 cycles. It was believed that the FDC insulation capable of forming a thin coating could be suitable for high-voltage power device packaging with good reliability because of reducing thermo-mechanical stresses greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. H. Okumura, MRS Bull. 40, 439–444 (2015). https://doi.org/10.1557/mrs.2015.97

    Article  CAS  Google Scholar 

  2. A. Merev, K. İsmail, Mapan 34, 43–48 (2019). https://doi.org/10.1007/s12647-018-0296-y

    Article  Google Scholar 

  3. G. Mona, High Volt. 3(3), 170–178 (2018). https://doi.org/10.1049/hve.2017.0186

    Article  Google Scholar 

  4. J.H. Fabian, S. Hartmann, A. Hamidi, Ind. Appl. Conf. 799–805 (2005). https://doi.org/10.1109/IAS.2005.1518425

  5. J. Tian, R. Xu, H. He, Y. Feng, J. Mater. Sci.: Mater. Electron. 28, 5102–5105 (2017). https://doi.org/10.1007/s10854-016-6165-y

    Article  CAS  Google Scholar 

  6. O. Hohlfeld, R. Bayerer, T. Hunger, H. Hartung, CIPS 1–4 (2012).

  7. D. W. Auckland, A. Rashid, K. Tavernier, B. R. Varlow, CEIDP'94 310–315 (1994). https://doi.org/10.1109/CEIDP.1994.591760

  8. N. Wang, I. Cotton, J. Robertson, S. Follmann, K. Evans, D. Newcombe, IEEE TDEI 17(4), 1319–1326 (2010). https://doi.org/10.1109/TDEI.2010.5539704

    Article  CAS  Google Scholar 

  9. M.M. Tousi, M. Ghassemi, ECCE 7124-7129 (2019). https://doi.org/10.1109/ECCE.2019.8913210

  10. H. Janssen., J.M. Seifert, H.C. Karner, IEEE TDEI 6(5), 651–659 (1999). https://doi.org/10.1109/TDEI.1999.9286759

  11. X. Zhao, X. Yang, J. Hu, Q. Li, J. He, Compos. Sci. Technol. 175(3), 151–157 (2019). https://doi.org/10.1016/j.compscitech.2019.03.018

    Article  CAS  Google Scholar 

  12. J.C. Pandey, N. Gupta, IEEE EIC 59–63 (2014). https://doi.org/10.1109/EIC.2014.6869347

  13. T. Lim, M. Velderrain, Electron. Packag. Technol. Conf. 914–916 (2007). https://doi.org/10.1109/EPTC.2007.4469778

  14. H. Du, Z. Song, J. Wang, Z. Liang, Y. Shen, F. You, Sens. Actuators A: Phys. 228(1), 1–8 (2015). https://doi.org/10.1016/j.sna.2015.01.012

    Article  CAS  Google Scholar 

  15. F. Wang, P. Zhang, M. Gao, X. Zhao, J. Gao, Electr. Insul. Dielectr. Phenom. 435–538 (2013). https://doi.org/10.1109/CEIDP.2013.6748326

  16. Z. Li, B. Du, T. Han, ASEMD 1–2 (2020). https://doi.org/10.1109/ASEMD49065.2020.9276195

  17. T. Christen, L. Donzel, F. Greuter, I.E.E.E. Electr, IEEE Electr. Insul. Mag. 26(6), 47–59 (2010). https://doi.org/10.1109/MEI.2010.5599979

    Article  Google Scholar 

  18. C.F. Bayer, E. Baer, U. Waltrich, D. Malipaard, A. Schletz, IEEE TDEI 22(1), 257–265 (2015). https://doi.org/10.1109/TDEI.2014.004285

    Article  CAS  Google Scholar 

  19. S. Mo, X. Li, Z. Zhao, X. Cui, X. Tang, IEEE TDEI 27(4), 1059–1067 (2020). https://doi.org/10.1109/TDEI.2020.008467

    Article  CAS  Google Scholar 

  20. L. Donzel, J. Schuderer, IEEE TDEI 19(3), 955–959 (2012). https://doi.org/10.1109/TDEI.2012.6215099

    Article  CAS  Google Scholar 

  21. Y. Dai, Y. Zhao, W. Yang, Y. Chen, L. Wei, ICEMPE 1–4 (2021). https://doi.org/10.1109/ICEMPE51623.2021.9509190

  22. F. Azimpour-Shishevan, H. Akbulut, M.A. Mohtadi-Bonab, J. Dyn. Behav. Mater. 5, 161–169 (2019). https://doi.org/10.1007/s40870-019-00195-x

    Article  Google Scholar 

  23. S. Zhong, S. Zou, J. Lo, in International Conference on Electronic Packaging. Technology 612–616 (2013). https://doi.org/10.1109/ICEPT.2013.6756544

  24. H. Xu, Y. Tang, J. Wu, ICEPT 1–3 (2019). https://doi.org/10.1109/ICEPT47577.2019.245288

  25. B.H. Jin, J. Jang, D.J. Kang, S. Yoon, H. Im, Compos Sci. (2022). https://doi.org/10.1016/j.compscitech.2022.109456

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. U1966212 and 51922075) and Tianjin Municipal Science and Technology Bureau (No. 21JCJQJC00150).

Author information

Authors and Affiliations

Authors

Contributions

Y-H. Mei and G-Q. Lu contributed to conceptualization; Y-H. Mei and G. Zhu contributed to methodology, data curation, and writing—review and editing; Y. Liang contributed to validation; Y. Liang, G. Zhu, and Y-H. Mei contributed to formal analysis; Y. Liang and Y-H. Mei contributed to investigation, writing—original draft preparation, and visualization; Y-H. Mei provided resources, contributed to supervision, administrated the project, and acquired funding. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yun-Hui Mei.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors listed consented for the submission of the manuscript to Journal of Materials Science: Materials in Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Zhu, G., Lu, GQ. et al. Reliable epoxy/SiC composite insulation coating for high-voltage power packaging. J Mater Sci: Mater Electron 33, 20508–20517 (2022). https://doi.org/10.1007/s10854-022-08865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08865-8

Navigation