Skip to main content
Log in

Laser synthesis of hybrid Fe/Cr 2D structures based on their oxides for thermo-sensors with high sensitivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconductors are considered promising materials for the fabrication of new thermo-sensors. The photons generated by a KrF laser source (λ = 248 nm, τFWHM ≤ 25 ns) at a fluency of 3.5, 4.5 or 5.5 J/cm2 were used for the synthesis of hybrid Fe/Cr 2D structures via the reaction of ablated iron and chromium atoms from combined target Fe/Cr with oxygen molecules (O2) by reactive pulsed laser deposition (RPLD) process. Hybrid Fe/Cr 2D structures of (50–130) nm thickness were deposited on 293, 500 or 800 K <100> Si substrates in O2 atmosphere of 0.1, 0.5 and 5.0 Pa. GIXD (grazing incident X-ray diffraction) analysis evidenced either amorphous or polycrystalline structures of the deposits. Element analysis was carried out by energy dispersive X-ray spectroscopy (EDXS). Semiconductor temperature trend was detected with variable energy band gap (Eg) in the range of (0.34–1.20) eV depending on the substrate temperature, O2 pressure, hybrid Fe/Cr 2D structure thickness and laser fluencies for atoms’ ablation. The optimum conditions corresponding to the highest thermo-sensitivity (Seebeck coefficient) were reached. The highest obtained Seebeck coefficient of these 2D structures was high as 13 mV/K in the range of (290–340) K. An interpretation for such high thermo-sensitivity was provided. Therefore, these thermo-sensors are exceptionally strong candidates operating at moderate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request. Datasets that are assigned digital object identifiers are cited in the reference list.

References

  1. H.S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, vol. 1–5 (Academic Press, San Diego, 2000)

    Google Scholar 

  2. A.P. Caricato, A. Luches, F. Romano, S.A. Mulenko, Y.V. Kudryavtsev, N.T. Gorbachuk, C. Fotakis, E.L. Papadopoulou, R. Klini, Appl. Surf. Sci. 254, 1288 (2007)

    Article  CAS  Google Scholar 

  3. A.P. Caricato, N.T. Gorbachuk, A.M. Korduban, G. Leggieri, A. Luches, P. Mengucci, S.A. Mulenko, D. Valerini, J. Vac. Sci. Technol. B 28(2), 295 (2010)

    Article  CAS  Google Scholar 

  4. A.P. Caricato, A. Luches, M. Martino, D. Valerini, Y.V. Kudryavtsev, A.M. Korduban, S.A. Mulenko, N.T. Gorbachuk, J. Optoelectron. Adv. Mater. 12, 42 (2010)

    Google Scholar 

  5. S.A. Mulenko, V.P. Mygashko, Appl. Surf. Sci. 252, 4449 (2006)

    Article  CAS  Google Scholar 

  6. A.P. Caricato, Y.V. Kudryavtsev, G. Leggiery, A. Luches, S.A. Mulenko, Appl Phys D 40, 4866 (2007)

    Article  CAS  Google Scholar 

  7. S.A. Mulenko, N.T. Gorbachuk, Appl. Phys. B 105, 517 (2011)

    Article  CAS  Google Scholar 

  8. S.A. Mulenko, Yu.N. Petrov, N.T. Gorbachuk, Appl. Surf. Sci. 258, 9186 (2012)

    Article  CAS  Google Scholar 

  9. V. Moise, R. Cloots, A. Rulmont, Int. J. Inorg. Mater. 3, 1323 (2001)

    Article  CAS  Google Scholar 

  10. T.C. Harman, P.J. Taylor, D.I. Spears, M.P. Walsh, J. Electron. Mater. 29, L1 (2000)

    Article  CAS  Google Scholar 

  11. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Nat. Mater. 6, 129–134 (2007)

    Article  CAS  Google Scholar 

  12. A. Ishida, D. Cao, S. Morioka, Y. Inoue, T. Kita, J. Electron. Mater. 38, 940 (2009)

    Article  CAS  Google Scholar 

  13. Yu. Bo, W. Liu, S. Chen, H. Wang, H. Wang, G. Chen, Z. Ren, Nano Energy 1, 472 (2012)

    Article  Google Scholar 

  14. D. Hartung, F. Gather, P. Hering, C. Kandzia, D. Reppin, A. Polity, B.K. Meyer, P.J. Klar, Appl. Phys. Lett. 106, 253901 (2015)

    Article  Google Scholar 

  15. H. Ohta, S.W. Kim, S. Kaneki, A. Yamamoto, T. Hashizume, Adv. Sci. 5, 1700696 (2018)

    Article  Google Scholar 

  16. T. Tepper, C.A. Ross, J. Appl. Phys. 91, 4453 (2002)

    Article  CAS  Google Scholar 

  17. T. Maruyama, Y. Shinyashiki, Thin Solid Films 333, 203 (1998)

    Article  CAS  Google Scholar 

  18. S. Jain, A.O. Adeyeye, S.Y. Chan, C.B. Boothroyd, Appl. Phys. D 37, 2720 (2004)

    Article  CAS  Google Scholar 

  19. J. Hermann, A.L. Thomann, C. Boulmer-Leborgne, M.L. DeGiorgi, A. Perrone, A. Luches, I.N. Mihailescu, J. Appl. Phys. 77, 2928 (1995)

    Article  CAS  Google Scholar 

  20. S.A. Mulenko, N.T. Gorbachuk, N. Stefan, Laser Manuf. Mater. Process. 1, 21 (2014)

    Article  Google Scholar 

  21. S.A. Mulenko, N.T. Gorbachuk, N. Stefan, Int. Res. J. Nanosc. Nanotechnol. 1(2), 008 (2014)

    Google Scholar 

  22. S.A. Mulenko, N.T. Gorbachuk, N. Stefan, F. Miroiu, Front. Sens. 4, 16 (2016)

    Article  Google Scholar 

  23. N. Stefan, S.A. Mulenko, I.N. Mihailescu, N.A. Skoryk, V.M. Popov, J. Nanosci. Nanotechnol. Appl. 3, 1 (2019)

    Google Scholar 

  24. N. Stefan, S.A. Mulenko, M.A. Skoryk, V.M. Popov, O.Y. Gudymenko, Appl. Phys. B 126, 171 (2020)

    Article  CAS  Google Scholar 

  25. S.A. Mulenko, N. Stefan, E.G. Len, M.A. Skoryk, V.M. Popov, O.Y. Gudymenko, J. Mater. Sci. 32, 17123 (2021)

    CAS  Google Scholar 

  26. K.V. Shalimova, Fizica Poluprovodnikov, 3rd edn. (Energoatomizdat, Moskva, 1985), pp. 177–181. (in Russian).

  27. V.F. Kiselev, S.N. Kozlov, A.V. Zoteev, Osnovi fiziki poverhnosti tverdogo tela, (Moskovski Universitet, 1999), p. 284 (in Russian).

  28. C.A. Wert, R.M. Thomson, Physics of Solids (McGraw-Hill Book Company, New York, 1964), p.556

    Google Scholar 

  29. N. Petermann, N. Stein, G. Schierning, R. Theissmann, B. Stoib, M.S. Brandt, C. Hecht, C. Schulz, H. Wiggers, J. Phys. D 44, 174034 (2011)

    Article  Google Scholar 

  30. J. Recatala-Gomez, P. Kumar, A. Suwardi, A. Abutaha, I. Nandhakumar, K. Hippalgaonkar, Sci. Rep. 10, 17922 (2020)

    Article  CAS  Google Scholar 

  31. W.W. Duley, Laser Processing and Analysis of Materials (Plenum Press, New York and London, 1983), p.504

    Book  Google Scholar 

Download references

Acknowledgements

N.Stefan and S.A.Mulenko express of gratitude to the support of National Academy of Sciences of Ukraine and Romanian Academy in the frame of the theme “Synthesis of nanometric structures and heterostructures for sensors and energy converters”. N.Stefan acknowledges to the support of Romania National Authority for Research and Innovation (UEFISCDI) under Nucleus Contract No 16N/PN 19 15 01 01/2019-2022. S.A.Mulenko and other authors acknowledge to the support of National Academy of Sciences of Ukraine for the theme No.0118U000416 and The State Financed Program “Support for the development of priority area of scientific research” KPKVK No. 6541230-3A.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by S.A. Mulenko, N. Stefan, A.B. Smirnov, and GIXD, SEM analysis, film thickness measurements for hybrid Fe/Cr 2D structures were performed by O.Yo. Gudymenko, M.A. Skoryk, V.M. Popov. The first draft of the manuscript was written by S.A. Mulenko, A.B. Smirnov, V.M. Popov and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The authors declare that no fund, grant or other support were received during the preparation of this manuscript. There are no conflicts of interest. All authors contributed equally to this work.

Corresponding author

Correspondence to S. A. Mulenko.

Ethics declarations

Competing interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulenko, S.A., Stefan, N., Skoryk, M.A. et al. Laser synthesis of hybrid Fe/Cr 2D structures based on their oxides for thermo-sensors with high sensitivity. J Mater Sci: Mater Electron 33, 21258–21269 (2022). https://doi.org/10.1007/s10854-022-08850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08850-1

Navigation