Skip to main content
Log in

Laser damage threshold, antimicrobial efficacy and physicochemical properties of an organometallic L-proline lithium chloride monohydrate single crystal for NLO application and optoelectronic device fabrication

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The potential metalorganic L-proline lithium chloride monohydrate single crystal was grown by slow evaporation method for evaluating optoelectronic device fabrication. From the single crystal XRD studies, the grown crystal was confirmed the molecular packing in monoclinic crystal lattice. The powder XRD data confirm the phase purity of the grown crystal. Vibrational absorption band assignments were recognized by FTIR and FT-Raman spectrum and they confirmed the presence of multiple functional groups in the grown crystal structure. Optical properties of the grown crystal were studied by using transmittance and absorption spectrum of UV–Vis–NIR analysis. The dielectric response of the grown crystal was studied in the frequency range between 50 Hz and 2 MHz for four temperature gradients. From the microhardness study, some mechanical parameters such as fracture toughness, brittleness index and yield strength were calculated. The photoluminescence activity of the grown crystal was deliberate in terms of optical peaks. The amino group participation over the optical scattering nodal regions for generating radiation absorption process to fascinate optical endurance was studied. TG/DTA curve shows that the LPLCM crystal was thermally stable up to 132 °C. The laser damage threshold value of the grown crystal was measured using multishot mode and it was found to be 7.78 GW/cm2. The fractionation of the etching time prevents lattice from over etching and degradation of the mechanical properties of the grown crystal. LPLCM crystal showed higher antibacterial activity against one gram positive and one gram negative bacterial species. Second order nonlinear optical efficiency of the LPLCM crystal was studied at 1064 nm generated by a nanosecond pulsed Nd:YAG laser source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D.S. Chemla, J. Zyss, J., Nonlinear optical properties of organic molecules and crystals (Academic Press, New York, 1987)

    Google Scholar 

  2. C. Razetti, M. Ardoino, L. Zanotti, M. Zha, C. Paorici, Cryst. Res. Technol. 37(5), 456–465 (2002)

    Article  Google Scholar 

  3. A. Rich, F.H.C. Crick, J. Mol. Biol. 3, 483–506 (1961)

    Article  CAS  Google Scholar 

  4. A. Stacey, J. Bateman, T. Choi, T. Masara, W. Cole, R. Jaenisch, Nature (London) 332, 131–136 (1988)

    Article  CAS  Google Scholar 

  5. Y. Mitsui, M. Tsuboi, Y. Iitaka, Acta Cryst. B25, 2182–2192 (1969)

    Article  Google Scholar 

  6. S. Sathiskumar, T. Balakrishnan, K. Ramamurthi, S. Thamotharan, Spectrochim. Acta Part A 138, 187–194 (2015)

    Article  CAS  Google Scholar 

  7. A. Kandasamy, R. Siddeswaran, P. Murugakoothan, P. Suresh Kumar, R. Mohan, Cryst. Growth Des. 7, 183–186 (2007)

    Article  CAS  Google Scholar 

  8. Z. Rzaczynska, R. Mrozek, T. Gklowiak, J. Chem. Crystallogr. 27, 417–422 (1997)

    Article  CAS  Google Scholar 

  9. K. Manoj Gupta, N. Sinha, B. Kumar, Physica B 406, 63–67 (2011)

    Article  Google Scholar 

  10. D. Kalaiselvi, R. Jayavel, Appl. Phys. A 107, 93–100 (2012)

    Article  CAS  Google Scholar 

  11. G. Anandha Babu, P. Ramasamy, Mater. Chem. Phys. 113, 727–733 (2009)

    Article  Google Scholar 

  12. S. Sathiskumar, T. Balakrishnan, K. Ramamurthi, S. Thamotharan, Acta Cryst. E71, 217–219 (2015)

    Google Scholar 

  13. T. Uma Devi, N. Lawrence, R. Ramesh Babu, S. Selvanayagam, H. Stoeckli-Evans, K. Ramamurthi, Cryst. Growth Des. 9, 1370–1374 (2009)

    Article  Google Scholar 

  14. B. Riscob, R. Bhatt, N. Vijayan, I. Bhaumik, S. Ganesamoorthy, M.A. Wahab, Rashmi, G. Bhagavannarayana, J. Appl. Cryst. 46, 601–609 (2013)

    Article  CAS  Google Scholar 

  15. S.K. Kushwaha, K.K. Maurya, N. Vijayan, B. Kumar, R. Bhatt, S. Ganesamoorthy, G. Bhagavannarayana, Cryst. Eng. Comm. 14, 3297–3305 (2012)

    Article  CAS  Google Scholar 

  16. K. Nakamoto, Infrared and Raman spectra of Inorganic and Coordination compounds (Wiley, New York, 1978)

    Google Scholar 

  17. G. Socrates, Infrared and Raman characteristic group frequencies (John Wiley, New York, 2001)

    Google Scholar 

  18. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi. B 15, 627–637 (1966)

    Article  CAS  Google Scholar 

  19. P. Lakshmi Praveen, D.P. Ojha, Material Chem. Phys. 135, 628–634 (2012)

    Article  CAS  Google Scholar 

  20. P. Lakshmi Praveen, D.P. Ojha, J. Molecular Liquids 169, 110–116 (2012)

    Article  Google Scholar 

  21. P. Lakshmi Praveen, D.P. Ojha, J. Molecular Liquids 194, 8–12 (2014)

    Article  Google Scholar 

  22. B.W. Mott, Microindentation hardness testing (Butterworth, London, 1956)

    Google Scholar 

  23. R.C. Dhas, J.B. Charles, E.D. Gnanan, J. Cryst. Growth 137, 295–298 (1994)

    Article  CAS  Google Scholar 

  24. J.S. Pan, X.W. Zhang, Acta mat. 54, 1343–1348 (2006)

    Article  CAS  Google Scholar 

  25. C.P. Smyth, Dielectric behaviour and structure (McGraw Hill, New York, 1965)

    Google Scholar 

  26. K.V. Rao, A. Smakula, J. Appl. Phys. 36, 2031–2038 (1965)

    Article  CAS  Google Scholar 

  27. C. Balarew, R. Duhlew, J. Solid State Chem. 55, 1–6 (1984)

    Article  Google Scholar 

  28. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798–3813 (1968)

    Article  CAS  Google Scholar 

  29. S.B. Monaco, L.E. Davis, S.P. Velsk, F.T. Wng, D. Eimerl, J. Cryst. Growth 85, 252–256 (1987)

    Article  CAS  Google Scholar 

  30. G.C. Bhar, A.K. Chaudhary, P. Kumbhakar, Appl. Surf. Sci. 161, 155–162 (2000)

    Article  CAS  Google Scholar 

  31. S.A. Martin Britto Dhas, S. Natarajan, Mater. Lett. 62, 1136–1138 (2008)

    Article  CAS  Google Scholar 

  32. X.Q. Wang, X.F. Cheng, S.J. Zhang, D. Xu, G.H. Zhang, Z.H. Sun, F.P. Yu, X.J. Liu, W.L. Liu, C.L. Chen, Physica B 405, 1071–1080 (2010)

    Article  CAS  Google Scholar 

  33. G. Peramaiyan, P. Pandi, N. Vijayan, G. Bhagavannarayana, R. Mohan Kumar, Optik 124, 4058–4063 (2013)

    Article  CAS  Google Scholar 

  34. D. Joseph Daniel, P. Ramasamy, Opt. Mater. 36, 971–976 (2014)

    Article  CAS  Google Scholar 

  35. A.W. Bauer, W.W.M. Kirby, J.C. Sherris, M. Turck, Am. J. Clin. Pathol. 45, 493–496 (1966)

    Article  CAS  Google Scholar 

  36. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M.S. Niasari, Inter. J. Hydrogen Energy 47, 14319–14330 (2022)

    Article  CAS  Google Scholar 

  37. P.G. Lawrence, P.L. Harold, O.G. Francis, Antibiotic Chemotherapy, 5th edn. (Churchill, Livingstone, Edinburgh, 1980)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SS. TB contributed to the scientific interpretation of this manuscript. The first draft of the manuscript was written by SS, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Sathiskumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathiskumar, S., Balakrishnan, T. Laser damage threshold, antimicrobial efficacy and physicochemical properties of an organometallic L-proline lithium chloride monohydrate single crystal for NLO application and optoelectronic device fabrication. J Mater Sci: Mater Electron 33, 20280–20292 (2022). https://doi.org/10.1007/s10854-022-08844-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08844-z

Navigation