Abstract
Zn-substituted copper ferrite nanoparticles (NPs) with size distribution 7–13 nm have been synthesized by a combination of sonochemical and standard co-precipitation methods. The crystallite size, phase purity, as well as cationic distribution are obtained from the Rietveld analysis of X-ray diffraction pattern. The transmission band near 575 cm−1 in FTIR spectrum represents the intrinsic metal oxide stretching vibrations at tetrahedral lattice site. The Raman spectra not only confirm the metal–oxygen bonds in tetrahedral/octahedral lattice sites, but also the phase purity of the sample. Using the log-normal distribution of particle sizes as obtained in HRTEM analysis, \(\Delta M\) vs. T curve [where \(\Delta M\) corresponds to difference between field-cooled (FC) and zero field-cooled (ZFC) magnetization] are mathematically fitted and mean blocking temperature, anisotropy constant and average frequency of oscillation of SPM particles are obtained from fitted data. The minor deviation from the experimental curve and theoretical fitting suggests that our system is mostly composed of single-domain (Super-paramagnetic) particles but a fraction of multi-domain (Ferromagnetic) particles are also present, which also contribute to magnetic responses. The temperature dependence of the magneto-crystalline anisotropy constant is also derived using the “law of approach” (LA) to saturation. We have fitted all the hysteresis curves and contribution of each magnetic phase (SPM, FM and PM) is extracted quantitatively from fitting. The present work is aimed to explore the underlying physics of ferrite system consisting of multiple magnetic phases.
Similar content being viewed by others
Data availability
Data will be made available on reasonable request.
References
D.H. Kim, H. Zeng, C. Thian, C.S. Brazel, J. Magn. Magn. Mater. 321, 3899–3904 (2009)
R.D. McMichael, R.D. Shull, L.J. Swartzendruber, L.H. Bennett, R.E. Watson, J. Magn. Magn. Mater. 111, 29–33 (1992)
M.I. Rosales, A.M. Plata, M.E. Nicho, A. Brito, M.A. Ponce, V.M. Castano, J. Mater. Sci. 30, 4446–4450 (1995)
A.S. Mahapatra, A. Mitra, A. Mallick, P.K. Chakrabarti, Ceram. Int. 42, 3826–3835 (2015)
A.S. Mahapatra, A. Mitra, A. Mallick, A. Shaw, P.K. Chakrabarti, Mater. Res. Bull. 102, 226–234 (2018)
S. Sutradhar, P. Saha, T. Debnath, S. Das, S. Chatterjee, Mater. Sci. Eng. B 245, 17–29 (2019)
Kazi Hanium Maria, S. Choudhury, M.A. Hakim, Int. Nano Lett. 3 (2013) 42(10p)
C.W. Chen, Magnetism and Metallurgy of Soft Magnetic Materials (North-Holland, Amsterdam, 1990), p.395
M.K. Satheeshkumar, E. Ranjith Kumar, Ch Srinivas, G. Prasad, S.S. Meena, I. Pradeep, N. Suriyanarayanan, D.L. Sastry, J. Magn. Magn. Mater. 484, 120–125 (2019)
V.A. Zhuravlev, R.V. Minin, V.I. Itin, I.Yu Lilenko, J. Alloy Compd. 692, 705–712 (2017)
W.C. Kim, S.J. Kim, S.W. Lee, C.S. Kim, J. Magn. Magn. Mater. 226, 1418–1420 (2001)
R. Rai, K. Verma, S. Sharma, S.S. Nair, M. Almeida Valente, A.L. Kholkin, N.A. Sobolev, J. Phys. Chem. Solids 72, 862–868 (2011)
N. Najmoddin, A. Beitollahi, H. Kavas, M.S. Mohseni, H. Rezaie, J. Akerman, M.S. Toprak, Ceram. Int. 40, 3619–3625 (2014)
K. Kamazawa, Y. Tsunoda, H. Kadowaki, K. Kohn, Phys. Rev. B 68, 024412 (2003)
M.A. Hakim, M. Manjurul Haque, M. Huq, P. Nordblad, Physica B 406, 48–51 (2011)
M. Vijayaraj, C.H.S. Gopinath, Appl. Catal. A 320, 64–68 (2007)
M.H. Mahmoud, A.M. Hassan, A. El-Aziz, A. Said, H.H. Hamdeh, J. Mol. Struct. 1114, 1–6 (2016)
W. Wu, J. Cai, X. Wu, K. Wang, Y. Hu, Q. Wang, J. Supercond. Nov. Magn. 26, 3523–3528 (2013)
M. Ajmal, A. Maqsood, J. Alloys Compd. 460, 54–59 (2008)
A. Gholizadeh, J. Magn. Magn. Mater. 452, 389 – 397 (2018)
E.C. Stoner, E.P. Wohlafarth, Philos. Trans. R Soc. A Math. Phys. Sci. 240, 599–642 (1948)
C.P. Bean, J.D. Livingston, J. Appl. Phys. 30, 120S–129S (1959)
L. N´eel, Ann. Geophys. 5, 99 (1949)
B.J. Sarkar, A. Bandyopadhyay, J. Mater. Sci: Mater. Electron. 32, 1491–1505 (2021)
S. Mukherjee, D. Das, S. Mukherjee, P.K. Chakrabarti, J. Phys. Chem. C 114, 14763–14771 (2010)
B.J. Sarkar, J. Mandal, M. Dalal, A. Bandyopadhyay, B. Satpati, P.K. Chakrabarti, J. Electron. Mater. 47, 1768–1779 (2018)
L. Lutterotti, MAUD, version 2.55,http://www.ing.unitn.it/~luttero/maud. Accessed 30 Apr 2015
N.C. Popa, J. Appl. Cryst. 31, 176–180 (1998)
B.J. Sarkar, A. Bandyopadhyay, J. Mandal, A.K. Deb, P.K. Chakrabarti, J. Alloy Compd. 656, 339–346 (2016)
B.J. Sarkar, A.K. Deb, P.K. Chakrabarti, RSC Adv. 6, 6395–6404 (2016)
G.R. Kumar, K.V. Kumar, Y.C. Venudhar, Mater. Sci. Appl. 03, 87–91 (2012)
A. Subha, M. Govindaraj Shalini, S. Rout, S.C. Sahoo, J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05613-z
T.M. Hammad, J.K. Salem, A. Abu Amsha, N.K. Hejazy, J. Alloy Compd. 741, 123–130 (2018)
A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Alloys Compd. 509, 2929 (2011). https://doi.org/10.1016/j.jallcom.2010.11.153
A. Tony Dhiwahar, M. Sundararajan, P. Sakthivel, C.S. Dash, S. Yuvaraj, J. Phys. Chem. Solid 138, 109257 (2020)
B.K. Chatterjee, K. Bhattacharjee, A. Dey, C.K. Ghosh, K.K. Chattopadhyay, Dalton Trans. 43, 7930–7944 (2014)
C.B.R. Jesus, E.C. Mendonça, L.S. Silva, W.S.D. Folly, C.T. Meneses, J.G.S. Duque, J. Magn. Magn. Mater. 350, 47–49 (2014)
S. Verma, J. Chand, K.M. Batoo, M. Singh, J. Alloy Compd. 565, 148–153 (2013)
J.S. Micha, B. Dieny, J.R. Regnard, J.F. Jacquot, J. Sort, J. Magn. Magn. Mater. 272, E967–E968 (2004)
P.P. Vaishnava, U. Senaratne, E.C. Buc, R. Naik, V.M. Naik, G.M. Tsoi, L.E. Wenger, Phys. Rev. B 76, 024413(1)-024413(10) (2007)
M. El-Hilo, K. O.Grady, R.W. Chantrell, J. Magn. Magn. Mater. 114, 307–313 (1992)
R.N. Bhowmik, S. Kazhugasalamoorthy, R. Ranganathan, A.K. Sinha, J. Alloy Compd. 680, 615–627 (2016)
E. Chitra Devi, I. Soibam, J. Supercond. Nov. Magn. 32, 1293–1298 (2019)
A.P. Safronov, I.V. Beketov, S.V. Komogortsev, G.V. Kurlyandskaya, A.I. Medvedev, D.V. Leiman, A. Larrañaga, S.M. Bhagat, AIP Adv. 3, 052135 (2013)
V. Blanco-Gutierrez, R. Saez-Puche, M.J. Torralvo-Fernandez, J. Mater. Chem. 22, 2992 (2012)
P. Didukh, J.M. Greneche, A. Slawska-Waniewska, P.C. Fannin, L. Casas, J. Magn. Magn. Mater. 613, 242–245 (2002)
S. Ammar, N. Jouini, F. Fievet, Z. Beji, S. Leila, M. Danot, M.J. Marc, J. Phys.: Condens. Matter 18, 9055 (2006)
M.M. Eltabey, K.M. El-Shokrofy, S.A. Gharbia, J. Alloy Compd. 509, 2473–2477 (2011)
S.P. John, J. Mathew, J. Magn. Magn. Mater. 475, 160–170 (2019)
R. Sai, S.D. Kulkarni, K.J. Vinoy, N. Bhata, S.A. Shivashankar, J. Mater. Chem. 22, 2149–2156 (2012)
P.P. Hankare, M.R. Kadama, R.P. Patil, K.M. Garadkar, R. Sasikala, A.K. Tripathi, J. Alloy Compd. 501, 37–41 (2010)
M. Atif, S.K. Hasanain, M. Nadeem, Solid State Commun. 138, 416–421 (2006)
C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.M. Greneche, J. Phys.: Condens. Matter 12, 7795–7805 (2000)
S. Dey, R. Mondal, S. Majumder, P. Dasgupta, A. Poddar, S. Banerjee, S. Kumar, Mater. Today: Proc. 5, 9855–9859 (2018)
N.M. Deraz, J. Alloy Compd. 501, 317–325 (2010)
M. Salavati-Niasari, T. Mahmoudi, M. Sabet, SMostafa Hosseinpour-Mashkani, F. Soofivand, F. Tavakoli, J. Clust. Sci. 23, 1003–1010 (2012)
B. Jansi Rani, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-017-8108-7
A. Subha, M.G. Shalini, B. Sahu, S.C. Sahoo, J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0221-8
G.F. Goya, H.R. Rechenberg, J.Z. Jiang, J. Appl. Phys. 84, 1101–1108 (1998)
S. Duhalde, M.F. Vignolo, F. Golmar, C.E. Rodríguez Torres, L.A. Errico, A.F. Cabrera, M. Rentería, F.H. Sánchez, M. Weissman, Phys. Rev. B 72, 161313(1)-161313(4) (2005)
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Contributions
B.J. Sarkar contributed to conception and design of study, acquisition of data, analysis and interpretation of data and drafting the manuscript. A. Bandyopadhyay contributed to conception and design of study, analysis and interpretation of data and drafting the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sarkar, B.J., Bandyopadhyay, A. Quantitative analysis of the magnetic properties of a mixture of single- and multi-domain Zn-substituted CuFe2O4 nanoparticles with canted spin. J Mater Sci: Mater Electron 33, 20081–20094 (2022). https://doi.org/10.1007/s10854-022-08825-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-022-08825-2