Skip to main content
Log in

Effect of current density on the densification of 3%mol yttria-stabilized zirconia/carbon nanotube by flash sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flash sintering (FS) is a promising method with a great potential for the ceramic fabrication with rapid densification process. However, the uniform densification of the sintered samples is also a key issue. In the present study, the densification behavior of 3YSZ/carbon nanotube (CNT) composites in flash sintering was investigated. CNT was used as a conductive additive which would form a continuous conductive network in the 3YSZ matrix. As a result the processing parameters especially current density played a key role to the densification for sintered composites in FS. The results showed that a larger current density resulted in a higher relative density of the sample. With the addition of CNT, the current density limit increased from 70 mA/mm2 for the pure 3YSZ to 300 mA/mm2 for composite 3YSZ/CNT. Further, the effects of current density on the densification behavior and electrical performance of 3YSZ/CNT were also discussed. Nearly completely dense 3YSZ/CNT composites could be obtained at a furnace temperature of 700 °C, electric field of 25 V/cm and current density limit of 300 mA/mm2 by flash sintering. Electrochemical Impedance Spectroscopy (EIS) results indicated that the ionic conductivity of all 3YSZ/CNT samples sintered at different current densities were almost similar, and the highest conductivity 0.471 µS/cm of 3YSZ/CNT sintered at 300 mA/mm2 could be reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Research data are not shared.

References

  1. E.M.S.V.A. Sadyko, N.F. Eremeev, P.I. Skriabin, V. Krasnov, Y.N. Bespalko, S.N. Pavlova, Y.E. Fedorova, E.Y. Pikalova, A.V. Shlyakhtina, Russ. J. Electrochem. 55(8), 701–718 (2019). https://doi.org/10.1134/S1023193519080147

    Article  Google Scholar 

  2. J.X. Yiming Lyu, D. Wang, J. Wang, J. Mater. Sci. 17(55), 7184–7207 (2020). https://doi.org/10.1007/s10853-020-04497-7

    Article  CAS  Google Scholar 

  3. S. Guan,Liu, Z. -p Chin. J. Chem. Phys. 34(2), 125–136 (2021). https://doi.org/10.1063/1674-0068/cjcp2103044

    Article  CAS  Google Scholar 

  4. K.Y. Akira Kishimoto, T. Teranishi, H. Hayashi, S. Sano, Ceram. Int. 2015 (4), 5785–5789 (2015). https://doi.org/10.1016/j.ceramint.2015.01.006

    Article  CAS  Google Scholar 

  5. Y.-C. Wu, Y.-T. Chiang, J. Am. Ceram. Soc. 94(7), 2200–2212 (2011). https://doi.org/10.1111/j.1551-2916.2010.04347.x

    Article  CAS  Google Scholar 

  6. S.H. Ji, D.S. Kim, M.S. Park, J.S. Yun, Nanomaterials 11(1), 192 (2021). https://doi.org/10.3390/nano11010192

    Article  CAS  Google Scholar 

  7. M. Cologna,Rashkova, B. Raj, R J. Am. Ceram. Soc. 93(11), 3556–3559 (2010). https://doi.org/10.1111/j.1551-2916.2010.04089.x

    Article  CAS  Google Scholar 

  8. H.-R. Mao, R.-F. Guo, Y. Cao, S.-B. Jin, X..-M. Qiu, P. Shen, J. Eur. Ceram. Soc. 41(4), 2855–2860 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.11.052

    Article  CAS  Google Scholar 

  9. J. Liu, X. Li, X. Wang, R. Huang, Z. Jia, Scr. Mater. 176, 28–31 (2020). https://doi.org/10.1016/j.scriptamat.2019.09.026

    Article  CAS  Google Scholar 

  10. B. McWilliams,Yu, J. Kellogg, F J. Mater. Sci. 53(12), 9297–9304 (2018). https://doi.org/10.1007/s10853-018-2207-6

    Article  CAS  Google Scholar 

  11. L. Spiridigliozzi, M. Biesuz, G. Dell’Agli, E. Di Bartolomeo, F. Zurlo, V.M. Sglavo, J. Mater. Sci. 52(12), 7479–7488 (2017). https://doi.org/10.1007/s10853-017-0980-2

    Article  CAS  Google Scholar 

  12. Z. Wang,Peng, P. Zhang, L. Wang, N. Tang, B. Cui, B. Liu, J. Xu, D J. Mater. Sci. : Mater. Electron. 33(9), 6283–6293 (2022). https://doi.org/10.1007/s10854-022-07803-y

    Article  CAS  Google Scholar 

  13. M. Biesuz,Sglavo, V.M. Sglavo, J. Eur. Ceram. Soc. 39(2–3), 115–143 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.08.048

    Article  CAS  Google Scholar 

  14. C.E.J. Dancer, Mater. Res. Express (2016). https://doi.org/10.1088/2053-1591/3/10/102001

    Article  Google Scholar 

  15. R. Chaim, J. Estournès, J. Mater. Sci. 53(9), 6378–6389 (2018). https://doi.org/10.1007/s10853-018-2040-y

    Article  CAS  Google Scholar 

  16. D. Liu, X. Li, J. Gao, Y. Liu, F. Li, K. Xia, J. Wang, Y. An, L. Ceram. Int. 42(16), 19066–19070 (2016). https://doi.org/10.1016/j.ceramint.2016.09.065

    Article  CAS  Google Scholar 

  17. D. Liu, X. Li, F. Liu, J. Gao, K. Ren, Y. Wang, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154061

    Article  Google Scholar 

  18. D. Liu, Y. Gao, J. Liu, Y. Wang, L. An, L. Ceram. Int. 42(15), 17442–17446 (2016). https://doi.org/10.1016/j.ceramint.2016.08.048

    Article  CAS  Google Scholar 

  19. J.S.C. Francis, R. Raj, J. Halloran, J. Am. Ceram. Soc. 96(9), 2754–2758 (2013). https://doi.org/10.1111/jace.12472

    Article  CAS  Google Scholar 

  20. Z.J. Xinghua Su, G. An, M. Fu, Q. Tian, X. Sun, Ceram. Int. 47(19), 27267–27273 (2021). https://doi.org/10.1016/j.ceramint.2021.06.148

    Article  CAS  Google Scholar 

  21. X. Su, M. Fu, G. An, Z. Jiao, Q. Tian, Z. Wei, J. Am. Ceram. Soc. 104(12), 6079–6085 (2021). https://doi.org/10.1111/jace.17991

    Article  CAS  Google Scholar 

  22. W. Xiao, N. Ni, X. Fan, X. Zhao, Y. Liu, P. Xiao, J. Mater. Sci. Technol. 60, 70–76 (2021). https://doi.org/10.1016/j.jmst.2020.04.051

    Article  CAS  Google Scholar 

  23. M.B. Giuseppe Fele, P. Bettotti, R. Moreno, V.M. Sglavo, Ceram. Int. 46(14), 23266–23270 (2020). https://doi.org/10.1016/j.ceramint.2020.06.008

    Article  CAS  Google Scholar 

  24. D. Marinha, M. Belmonte, J. Eur. Ceram. Soc. 39(2–3), 389–395 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.09.016

    Article  CAS  Google Scholar 

  25. D. Demirskyi, O. Vasylkiv, J. Alloys Compd. 691, 466–473 (2017). https://doi.org/10.1016/j.jallcom.2016.08.234

    Article  CAS  Google Scholar 

  26. M.O. Prado, M. Biesuz, M. Frasnelli, F.E. Benedetto, V.M. Sglavo, J. Non-Cryst. Solids. 476, 60–66 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.09.024

    Article  CAS  Google Scholar 

  27. E. Bichaud, J.M. Chaix, C. Carry, M. Kleitz, M.C. Steil, J. Eur. Ceram. Soc. 35(9), 2587–2592 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.02.033

    Article  CAS  Google Scholar 

  28. M. Yu, S. Grasso, R. McKinnon, T. Saunders, M. Reece, J. Adv. Appl. Ceram. 116(1), 24–60 (2016). https://doi.org/10.1080/17436753.2016.1251051

    Article  CAS  Google Scholar 

  29. X.L.P. Han Wang, J. Li, T.B. Holland, K.S.N. Vikrant, L. Qiang, C. Stephen Hellberg, N. Bernstein, R. Edwin García, A. Mukherjee, X. Zhang, H. Wang, Ceram. Int. 45(1), 1251–1257 (2019). https://doi.org/10.1016/j.ceramint.2018.10.007

    Article  CAS  Google Scholar 

  30. R. Raj, J. Eur. Ceram. Soc. 32(10), 2293–2301 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.030

    Article  CAS  Google Scholar 

  31. R. Kirchheim, Acta Mater. 175, 361–375 (2019). https://doi.org/10.1016/j.actamat.2019.06.030

    Article  CAS  Google Scholar 

  32. C.A. Grimley, A.L.G. Prette, E.C. Dickey, Acta Mater. 174, 271–278 (2019). https://doi.org/10.1016/j.actamat.2019.05.001

    Article  CAS  Google Scholar 

  33. L. Guan,Li, J. Song, X. Bao, J. Jiang, T Scr. Mater. 159, 72–75 (2019). https://doi.org/10.1016/j.scriptamat.2018.09.014

    Article  CAS  Google Scholar 

  34. R. Muccillo, S. Ferlauto, A.N.S. Muccillo, E. Ceram. 2(1), 64–73 (2019). https://doi.org/10.3390/ceramics2010006

    Article  CAS  Google Scholar 

  35. I.R.L. João, V. Campos, V.A.B. Yoon, S. Ghose, R. Raj, M.J.A. Eliria, L.M. Pallone, Jesus, Scr. Mater. 203, 114093 (2021). https://doi.org/10.1016/j.scriptamat.2021.114093

    Article  CAS  Google Scholar 

  36. R.I. Todd,Zapata-Solvas, E. Bonilla, R.S. Sneddon, T. Wilshaw, P. R.,J. Eur. Ceram. Soc. 35(6), 1865–1877 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.022

    Article  CAS  Google Scholar 

  37. N. Masó, A.R. West, Chem. Mater. 27(5), 1552–1558 (2015). https://doi.org/10.1021/cm503957x

    Article  CAS  Google Scholar 

  38. M. Biesuz, L. Pinter, T. Saunders, M. Reece, J. Binner, V.M. Sglavo, S. Grasso, Materials (Basel) (2018). https://doi.org/10.3390/ma11071214

    Article  Google Scholar 

  39. Z.W. Jing Zhang, T. Jiang, L. Xie, C. Sui, R. Ren, J. Qiao, K. Sun, Ceram. Int. 40(16), 14037–14043 (2017). https://doi.org/10.1016/j.ceramint.2017.07.137

    Article  CAS  Google Scholar 

  40. J.C. M’Peko, J.S.C. Francis, R. Raj, D. Lupascu, J. Am. Ceram. Soc. 96(12), 3760–3767 (2013). https://doi.org/10.1111/jace.12567

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

YY: Funds, Instruments, Methodology, Experiment, Experimental data processing, Writing—Original draft preparation, Writing—Reviewing and Editing. PZ: Experiment, Software, Investigation. TM:Supervision, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Yue Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1032.7 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhao, P. & Ma, T. Effect of current density on the densification of 3%mol yttria-stabilized zirconia/carbon nanotube by flash sintering. J Mater Sci: Mater Electron 33, 19901–19909 (2022). https://doi.org/10.1007/s10854-022-08809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08809-2

Navigation