Skip to main content
Log in

Synthesis and studies of the zinc acetate (ZA) crystal for dielectric, nano-photonics and electronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ZA are finely full-grown by usual slow evaporation solution growing scheme and the single XRD shows the crystal size as well as the dimension of ZA. The crystal obtained is of white color crystalline precipitate. The crystal system of titled sample is monoclinic, the space group is P21/c and framework of ZA parameters are a = 15.097 Å, b = 9.238 Å, c = 4.7969 Å, and beta is 98.11°. The coated ZA is appropriately and finely used for optical-electronic practice improved results for frequency enhancing custom as the standard one more than uncoated value of diodes. Scanning electron microscope analyzed 3000 times magnified image with 10-micron length parameter. The specimen shows uniform mapping of some seed specimen. The ZA structure is explained by the effective computational method. The hardness of different scaling calculates the average value of HV index. When the load in grams increases as well as the hardness also tends to be increased, so, the ZA sample has RISE effect with n as 3.32. The photonic effective nano band gap of ZA is 5.63 eV as well the UV cut-off for nano-ZA is 220 nm; the ZA shows a bluish green light emission all the way through fluorescence; and also the elemental confirmation is done by CHNSO experimental mode analyzing particle size of 52 nm average scaling with TEM configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Research data policy and data availability statements

Data are not submitted anywhere and all studies performed are presented here; no data separately available in any system or mode.

References

  1. A.G. Quarell, Nature 170, 818 (1952). https://doi.org/10.1038/170818b0

    Article  Google Scholar 

  2. E.M. Onitsch, The present status of testing the hardness of materials. Mikroskopie 95, 12 (1956)

    Google Scholar 

  3. R. Bhuvaneswari, K.S. Murugesan, Opt. Mater. 98, 109431 (2019). https://doi.org/10.1016/j.optmat.2019.109431

    Article  CAS  Google Scholar 

  4. S. Yesuvadian, A. Selvaraj, M.M. Methodius, B. Godavarti, V. Narayanasamy, P.A. Devarajan, Optik 126(1), 95–100 (2015)

    Article  CAS  Google Scholar 

  5. M. A. Rajkumar, S. Stanly John Xavier, S. Anbarasu, P. A. Devarajan, J. Phys. Sci. 2(1), 1 (2014).

  6. M.E. Lines, A.M. Glass, Principle and Application of Ferroelectrics and Related Material (Oxford University Press, Oxford, 1997)

    Google Scholar 

  7. S.M. Dharmaprakash, P. Mohan Rao, J. Mater. Sci. 8, 1167 (1989)

    CAS  Google Scholar 

  8. K. SenthilKannan, Int. J. Eng. Mater. 7(4), 310 (2018)

    Google Scholar 

  9. E.M. Onitch, J. Cryst. Process Technol. 95, 12 (1956)

    Google Scholar 

  10. R. Krishnaveni et al., Preamble to Biomaterials and its Applications in Science and Technology, Lulu Publications (2019).

  11. S. Gunasekaran, K. SenthilKannan, S. Loganathan et al., Indian J. Phys. 87, 1189 (2013). https://doi.org/10.1007/s12648-013-0363-8

    Article  CAS  Google Scholar 

  12. R. Aarthi, S. Ramalingam, S. Periandy K. SenthilKannan, J. Taibah Univ. Sci. 13(1), 917 (2019).

  13. K. SenthilKannan, S. Gunasekaran, K.A. Seethalakshmi, Int. J. Sci. Eng. 4, 2 (2013)

    Google Scholar 

  14. N. Kishore, K. SenthilKannan, T. Periyanayagi et al., CO and HCHO adsorption on FeOmonowire devices: a DFT study. Appl. Phys. A 123, 706 (2017). https://doi.org/10.1007/s00339-017-1330-6

    Article  CAS  Google Scholar 

  15. P. Saravanan, K. SenthilKannan, R. Divya et al., J. Mater. Sci. Mater. Electron. 31, 4301 (2020). https://doi.org/10.1007/s10854-020-02985-9

    Article  CAS  Google Scholar 

  16. M. Jothibas, et al. AIP Conference Proceedings 2162, 020151 (2019). https://doi.org/10.1063/1.5130361Published.

  17. S. Gnanam et al., IOP Conf. Series: Mater. Sci. Eng. 561, 012086 (2019). https://doi.org/10.1088/1757-899X/561/1/012086.

  18. R. Krishnaveni et al., Int. J. Anal. Exp. Modal Anal. 11, 8 (2019)

    Google Scholar 

  19. K. SenthilKannan, Int. J. Eng. Math. 7, 1 (2018)

    Google Scholar 

  20. K. SenthilKannan et al., Int. J. Chemtech. Res. 6, 3187 (2014)

    CAS  Google Scholar 

  21. K. SenthilKannan, S. Gunasekaran, Int. J. Frontier Technol. 3, 29 (2013)

    Google Scholar 

  22. T. Malathi Rekha et al., Int. J. Appl. Nat. Sci. 5, 133 (2018).

  23. K. Senthilkannan et al., Spectroscopic (IR & Raman) studies of picolinium maleate (pm) single crystal. Scholars Research Library Archives of Applied Science Research 5, 100 (2013)

    Google Scholar 

  24. G. Flora et al., Anti diabetic (AD), stiffness and hardness studies of 2-[4-(Trifluoromethyl) phenyl]-1H-benzimidazole crystals-(TFMPHB) macro and nano crystal. Mater. Today: Proc. (2020).

  25. R. Senthilkumar et al., Anti-diabetic (AD) and hardness profile of 12-(4-Chlorophenyl)-9, 9-Dimethyl-9, 10-Dihydro-8H-benzo [a] xanthen-11 (12H)-one–(CPDDHBXH)–Comparative analysis of macro and nano crystals. Mater. Today: Proc. (2020).

  26. K. Senthilkannan et al., Tribological, filter studies of 3-Bromo-2-Hydroxy benzoic acid (BHBA) macro and nano crystals. Mater. Today: Proc. (2020).

  27. K. Senthilkannan et al., Fluorescence, filter, nano tribological studies of 12-(4-Chlorophenyl)-9, 9-Dimethyl-9, 10-Dihydro-8H-Benzo [A] Xanthen-11 (12H)-One–(CPDDHBXH) macro and nano crystals. Mater. Today: Proc. (2020).

  28. K. Senthilkannan et al., Tribological, Filter, FTIR and fluorescence studies of L-Alaninium tartrate (LAT) Macro and nano crystals. Mater. Today: Proc. (2020).

  29. G. Wilcox, Clin. Biochem. Rev. 26, 19 (2005)

    Google Scholar 

  30. C.Y. Yang, Y.Y. Yen, K.C. Hung et al., Nutr. Diabetes 9, 1 (2019). https://doi.org/10.1038/s41387-019-0092-y

    Article  CAS  Google Scholar 

  31. R. Tundis, M.R. Loizzo, F. Menichini, Mini Rev. Med. Chem. 10, 315 (2010). https://doi.org/10.2174/138955710791331007

    Article  CAS  Google Scholar 

  32. S.O. Oyedemi, B.O. Oyedemi, Ijeh II, et al. Sci. World J. 1 (2017). https://doi.org/10.1155/2017/3592491

  33. K. Khadayat, B.P. Marasini, H. Gautam et al., Clin. Phytosci. 6, 1 (2020)

    Article  Google Scholar 

  34. K. Kumar, K. Senthilkannan, R. Hariharasuthan, M. Jothibas, M. Vimalan, P. Baskaran, M. Iyanar, M. Kolanjinathan, J. Mater. Sci. Mater. Electron. 31(23), 1 (2020). https://doi.org/10.1007/s10854-020-04594-y

    Article  CAS  Google Scholar 

  35. L.J. Farrugia, J. Appl. Cryst. 45, 849 (2012)

    Article  CAS  Google Scholar 

  36. M. Kolanjinathan, K. Senthilkannan, S. Paramasivam, P. Baskaran, M. Iyanar, Mater. Today: Proc. 33, 2750 (2020). https://doi.org/10.1016/j.matpr.2020.01.575

    Article  CAS  Google Scholar 

  37. P. Periyathambi et al., Fluorescence and filter characterizations of NaBr-added L-alanine (LANB)—A comparative analysis in macro and nano scaled crystals. Mater. Today: Proc. (2020).

  38. L. Selvaraj et al., Anti-diabetic (AD) studies of Bis Glycine Hydro Bromide–BGHB macro crystals milled to nano scale of 219 nm as the preliminary fine particles. Mater. Today: Proc. (2020).

  39. G. Flora et al., Anti-diabetic (AD) and crystal stiffness characterizations of NaBr-added L-alanine (LANB)–A comparative analysis in macro and nano scale crystals. Mater. Today: Proc. (2020).

  40. G. Flora et al., Anti-inflammatory (AI) and crystalline hardness characterisations of 4-(4-chlorophenyl)-7,7-dimethyl-7,8-dihydro-4h-1-benzopyran-2,5(3h,6h)-dione-CPDMDHHBPHHD)—Comparative analysis of macro and nano scales crystals. Mater. Today: Proc. (2020).

  41. K. Senthilkannan et al., Anti diabetic (AD) studies of bis-glycine hydro bromide (45 nm) nano crystals. Mater. Today: Proc. (2020).

  42. P. Saravanan et al., Biofriendly and competent domestic microwave assisted method for the synthesis of ZnO nanoparticles from the extract of Azadirachta indica leaves, Mater. Today: Proc. (2020).

  43. K. SenthilKannan et al., Anti-diabetic (AD) activities of ZnO doped with Ce (7 at%) nano particles (NP). Mater. Today: Proc. (2020).

  44. K. Senthilkannan et al., Anti-diabetic activites of ZnO doped with Ce (5 at%) nano particles (NPs). Mater. Today: Proc. (2020).

  45. P. Baskaran et al., Anti-diabetic studies of barium paranitro phenolate macro and nano crystals. Mater. Today: Proc. (2020).

  46. P. Baskaran et al., Anti-diabetic activities of ZnO doped with Ce (3 at%) nano particles. Mater. Today: Proc. (2020).

  47. K. SenthilKannan et al., Anti diabetic (AD) studies of picolinium maleate nano crystals. Mater. Today: Proc. (2020).

  48. K. SenthilKannan et al., Effect of anti microbial and fluorescence on L-Alaninium maleate (LAM) macro and nano crystals. Mater. Today: Proc. (2020).

  49. K. SenthilKannan et al., Anti microbial and fluorescence activities of L-valinium picrate (LVP) macro and nano crystals. Mater. Today: Proc. (2020).

  50. K. SenthilKannan et al., Photo catalytic, anti bacterial activities of Ce doped zinc oxide nano particles. Mater. Today: Proc. (2020).

  51. V. Kalaipoonguzhali, Comparison of adsorption energy, ionization potential and electron affinity of CuS-ACT and CuS-Nit nanostructures monowire for nano device fabrication by computational approach. Mater. Today: Proc. (2020).

  52. M. Kolanjinathan, Anti-diabetic studies of 4-(4-chlorophenyl)-7,7-dimethyl-7,8-dihydro-4H-1-benzopyran-2,5(3H,6H)-dione-(CPDMDHHBPHHD) nanocrystals. Mater. Today: Proc. (2020).

  53. K. SenthilKannan, Electronic transport, HOMO–LUMO and computational studiesof CuSmonowire for nano device fabrication by DFT approach. Mater. Today: Proc. (2020).

  54. K. SenthilKannan, Anti diabetic (AD) activities of L-valinium picrate (LVP) macro and nano crystals. Mater. Today: Proc. (2020).

  55. G. Flora, K. Senthilkannan, R. Rengarajan, P. Saravanan, Mater. Today: Proc 33, 4233 (2020). https://doi.org/10.1016/j.matpr.2020.07.347

    Article  CAS  Google Scholar 

  56. M.S. Krishnamurthy, N. Shahina Begum, Acta Crystallogr. E 70, 760 (2014).

  57. R.P. Patel, K. SenthilKannan, R. Hariharasuthan, Braz. J. Phys. 51, 339 (2021)https://doi.org/10.1007/s13538-021-00883-x

  58. J.-Y. Zhang, X.-Y. Wang, M. Xiao, Appl. Phys. Lett. 81, 2076 (2002). https://doi.org/10.1063/1.1507613

    Article  CAS  Google Scholar 

  59. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968). https://doi.org/10.1063/1.1656857

  60. A. Von Hippel, E.P. Gross, J.G. Jelatis, M. Geller, Phys. Rev. 91, 568 (1953). https://doi.org/10.1103/PhysRev.91.568

    Article  Google Scholar 

  61. C. Hrizi, N. Chaari, Y. Abid, N. Chniba-Boudjada, S. Chaabouni, Polyhedron 46, 41 (2012). https://doi.org/10.1016/j.poly.2012.07.062

    Article  CAS  Google Scholar 

  62. A.C. Dhieb, A. Valkonen, M. Rzaigui, W. Smirani, J. Mol. Struct. 1102, 50 (2015). https://doi.org/10.1016/j.molstruc.2015.08.044

    Article  CAS  Google Scholar 

  63. R. Tundis, M.R. Loizzo, F. Menichini, Mini. Rev. Med. Chem. 10, 315 (2010). https://doi.org/10.2174/138955710791331007

    Article  CAS  Google Scholar 

  64. S.O. Oyedemi, B.O. Oyedemi, I.I. Ijeh, Sci. World J. 2017, 1 (2017). https://doi.org/10.1155/2017/3592491

    Article  CAS  Google Scholar 

  65. K. Khadayat, B.P. Marasini, H. Gautam, Clin. Phytosci. 6, 1 (2020). https://doi.org/10.1186/s40816-020-00179-8

    Article  CAS  Google Scholar 

  66. P. Baskaran, Mater. Today: Proc. 33, 3051 (2020). https://doi.org/10.1016/j.matpr.2020.03.268

    Article  CAS  Google Scholar 

  67. L.K. Williams, X. Zhang, S. Caner, Nat. Chem. Biol. 11, 691 (2019)

    Article  Google Scholar 

  68. S.K. Burley, H.M. Berman, C. Bhikadiya, Nucleic Acids Res. 47, 464 (2019). https://doi.org/10.1093/nar/gky1004

    Article  CAS  Google Scholar 

  69. W.L. DeLano, The PyMOL Molecular Graphics System (2020). http://www.pymol.org

  70. S. Dallakyan, A.J. Olson, Mol. Biol. 1263, 243 (2014). https://doi.org/10.1007/978-1-4939-2269-7_19

    Article  CAS  Google Scholar 

  71. T.A. Halgren, J. Comp. Chem. 17, 490 (1996)

    Article  CAS  Google Scholar 

  72. BIOVIA, Dassault systemes, [Biovia Discovery studio Visualizer]. San Diego: Dassault systems (2020)

  73. A. Daina, O. Michielin, V. Zoete, Sci. Rep. 7, 1 (2016). https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  74. M. Meena, C.K. Mahadevan, Cryst. Res. Technol. 43(2), 166 (2007).

  75. M. Meena, C.K. Mahadevan, Arch. Appl. Sci. Res. 2, 185 (2010)

    Google Scholar 

  76. M. George, S.S. Nair, K.A. Malini, P.A. Joy, M.R. Anantharaman, J. Phys. D Appl. Phys. 40, 1593 (2007)

    Article  CAS  Google Scholar 

  77. A.A. Menazea, One-Pot Pulsed Laser Ablation route assisted copper oxide nanoparticles doped in PEO/PVP blend for the electrical conductivity enhancement (2020)

  78. N. Sing, A. Agarwal, S. Sanghi, Curr. Appl. Phys. 11, 783 (2011)

    Article  Google Scholar 

  79. G. Catalan, D. O’Neill, R. M Bowman, and J.M. Gregg, Appl. Phys. Lett. 77, 3078 (2000).

  80. G. Catalan, Appl. Phys. Lett. 88, 102902 (2006)

    Article  Google Scholar 

  81. D. O’Neill, R.M. Bowman, J.M. Gregg, Appl. Phys. Lett. 77, 1520 (2000).

  82. S.A. Acharya, K. Singh, Adv. Mat. Lett. 5, 61 (2014)

    Article  Google Scholar 

  83. M. Jada Shanker, D. Buchi Suresh, Suresh Babu, Mater. Today: Proc. 3, 2091(2016).

  84. R. Divya, M. Meena, C.K. Mahadevan, C.M. Padma, Int. J. Eng. Res. Appl. 4, 1 (2014)

    Google Scholar 

  85. Y.Y. Ma, F. Xiao, S. Ye, Q.Y. Zhang, Z. H. Jiang, J. Am. Ceram. Soc., 96(7), 2238 (2013). https://doi.org/10.1111/jace.12314

  86. S. Hossain, Electromagn. Biol Med. 40, 65 (2021). https://doi.org/10.1080/15368378.2020.1850471

    Article  Google Scholar 

  87. D. Shyamala, R. Rathikha, K. Gomathi, Int. J. Appl. Phys. 12, 35 (2016)

    Google Scholar 

  88. Suresh Sagadevan, et al. Int. J. Chem. Tech. Res. 6, 2645 (2014).

  89. P. Aji Udhaya, M. Meena. Mater. Today: Proc. 9, 528 (2019).

  90. S. Tamilselvan et al. Spectrochim. Acta A Mol. Biomol., 114, 19 (2013).

  91. M. Meena, C.K. Mahadevan, Mater. Lett. 62, 3742 (2008)

    Article  CAS  Google Scholar 

  92. O. Mtioui, H. Litaiem, S. Garcia-Granda, L. Ktari, M. Dammak, Ionics 21, 411 (2015)

    Article  CAS  Google Scholar 

  93. Saı¨da Fatma Che´ rif, Amira Che´rif, Wassim Dridi, Mohamed FaouziZid 13, 5627 (2020)

  94. B.G. Soares, M.E. Leyva, Barra, G.M.O., Khastgir, D, Eur. Polym. J. 42, 676 (2006).

  95. A. Langar, N. Sdiri, H. Elhouichet, M. Ferid, Res. Phys. 7, 1022 (2017)

    Google Scholar 

  96. A. Oueslati, F. Hlel, K. Guidara, M. Gargouri, J. Alloys Compd. 492, 508 (2010)

    Article  CAS  Google Scholar 

  97. S.K. Tripathi, A. Gupta, M. Kumari, Bull. Mater. Sci. 35, 969 (2012)

    Article  CAS  Google Scholar 

  98. A. Dutta, T.P. Sinha, P. Jena, S. Adak, J. Non-Cryst, Solids 354, 3952 (2008)

    CAS  Google Scholar 

  99. H. Bouaamlat, N. Hadi, N. Belghiti, H. Sadki, M.N. Bennani, F. Abdi, T. Lamcharfi, M. Bouachrine, and M. Abarkan, Adv. Mater. Sci. (2020).

  100. B. Chatterjee, P.N. Gupta, Non-Cryst. Solids. 358, 3355 (2012)

    Article  CAS  Google Scholar 

  101. A.R. James, S. Priya, K. Uchino, K.J. Srinivas, Appl. Phys. 90, 3504 (2001)

    Article  CAS  Google Scholar 

  102. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  CAS  Google Scholar 

  103. P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, D. Jayatilaka, M.A.J. Spackman, Appl. Cryst. 54(3), 1006 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

V. Sathiya contributed to electrical analysis. K. Suganya contributed to crystal growth. K. SenthilKannan contributed to overall write up and other studies including interactions and paper responsibility. R. Manikandan analyzed structural and clone effect.

Corresponding authors

Correspondence to V. Sathiya or K. SenthilKannan.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical statement

All authors agreed to proceed and equally contributed; this paper is not presented anywhere for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathiya, V., Suganya, K., SenthilKannan, K. et al. Synthesis and studies of the zinc acetate (ZA) crystal for dielectric, nano-photonics and electronic applications. J Mater Sci: Mater Electron 33, 19514–19533 (2022). https://doi.org/10.1007/s10854-022-08787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08787-5

Navigation