Skip to main content
Log in

High-sensitive MIS structures with silicon nanocrystals grown via solid-state dewetting of silicon-on-insulator for solar cell and photodetector applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports an original method for the fabrication of metal–insulator–semiconductor (MIS) structures with silicon nanocrystals (Si NCs)-based active layers embedded in the insulating SiO2 oxide, for high-performance solar cell and photodetector applications. The Si NCs are produced via the in situ solid-state dewetting of ultra-pure amorphous silicon-on-insulator (a-SOI) grown by solid source molecular beam epitaxy (SSMBE). The size and density of Si NCs are precisely tuned by varying the deposited thickness of silicon. The morphological characterization carried out by using atomic force microscopy (AFM) and scanning electron microscopy (SEM) shows that the Si NCs have homogeneous size with well-defined spherical shape and densities up to ~ 1012 /cm2 (inversely proportional to the square of nominal a-Si thickness). The structural investigations by high-resolution transmission electron microscopy (HR-TEM) show that the ultra-small Si NCs (with mean diameter ~ 7 nm) are monocrystalline and free of structural defects. The electrical measurements performed by current versus voltage (IV) and photocurrent spectroscopies on the Si NCs-based MIS structures prove the efficiency of Si NCs to enhance the electrical conduction in MIS structures and to increase (× 10 times) the photocurrent (i.e., at bias voltage V = − 1 V) via the photo-generation of additional electron–hole pairs in the MIS structures. These results evidence that the Si NCs obtained by the combination of MBE growth and solid-state dewetting are perfectly suitable for the development of novel high-performance optoelectronic devices compatible with the CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Data sharing and data citation are encouraged.

References

  1. Y. Wang, S.R. Kavanagh, I. Burgués-Ceballos et al., Nat. Photon. 16, 235–241 (2022)

    Article  CAS  Google Scholar 

  2. C. Convertino, C.B. Zota, H. Schmid et al., Nat. Electron 4, 162–170 (2021)

    Article  CAS  Google Scholar 

  3. J. Guo, T. Liu, M. Li et al., Nat. Commun. 11, 3361 (2020)

    Article  Google Scholar 

  4. J. Vaidya, R.S.S. Kanthi, S. Alam et al., Sci. Rep. 12, 2199 (2022)

    Article  CAS  Google Scholar 

  5. A. Karmous, I. Berbezier, A. Ronda, Phys. Rev. B 73, 075323 (2006)

    Article  Google Scholar 

  6. I. Berbezier, A. Aouassa, L. Ronda et al., J. Appl. Phys. 113, 064908 (2013)

    Article  Google Scholar 

  7. L. Venema, Silicon electronics and beyond. Nature 479, 309 (2011)

    Article  CAS  Google Scholar 

  8. X. Guo, Z. Xue, Y. Zhang, NPG Asia Mater. 11, 29 (2019)

    Article  CAS  Google Scholar 

  9. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4(89), 89–90 (1964)

    Article  CAS  Google Scholar 

  10. M.P. Pileni, J. Phys. Chem. B 105, 17, 3358–3371 (2001)

    Article  CAS  Google Scholar 

  11. M. Aouassa, L. Favre, A. Ronda, H. Maaref, I. Berbezier, New J. Phys. 14(6), 063038 (2012)

    Article  Google Scholar 

  12. B. De Salvo, P. Luthereau, T. Baron, G. Ghibaudo, F. Martin, D. Fraboulet, G. Reimbold, J. Gautier, Microelectron. Reliab. 40(4–5), 863–866 (2000)

    Article  Google Scholar 

  13. A. Mazurak, R. Mroczynski, D. Beke, A. Gali, Nanomaterials 10(12), 2387 (2020)

    Article  CAS  Google Scholar 

  14. S. Cosentino, P. Liu, S.T. Le, S. Lee, D. Paine, A. Zaslavsky, D. Pacifici, S. Mirabella, M. Miritello, I. Crupi, A. Terrasi, Appl. Phys. Lett. 98, 221107 (2011)

    Article  Google Scholar 

  15. T. Baron, F. Mazen, C. Busseret, A. Souifi, P. Mur, F. Fournel, M.N. Séméria, H. Moriceau, B. Aspard, P. Gentile, N. Magnea, Microelectron. Eng. 61, 511–515 (2002)

    Article  Google Scholar 

  16. M. Aouassa, L. Favre, A. Ronda, H. Maaref, I. Berbezier, New J. Phys. 14, 063038 (2012)

    Article  Google Scholar 

  17. N. Keita et al., Nanotechnology 33, 075709 (2022)

    Article  Google Scholar 

  18. S. Dave Lumen, E. Wang, S. Mäkilä, M. Imlimthan, A. Sarparanta, C.W. Correia, J. Haug, H.A. Hirvonen, J. Santos, Anu, Airaksinen, W. Filtvedt, J. Salonen, Eur. J. Pharm. Biopharm. 158, 254–265 (2021)

    Article  Google Scholar 

  19. R. Demoulin, M. Roussel, S. Duguay, D. Muller, D. Mathiot, P. Pareige, E. Talbot, J. Phys. Chem. C 123, 7381–7389 (2019)

    Article  CAS  Google Scholar 

  20. Z. Kang, Y. Liu, C. Him, A. Tsang, D.D. Fan, N.B. Wong, S.T. Lee, Adv. Mater. 216, 661–664 (2009)

    Article  Google Scholar 

  21. A. Benkouider, A. Ronda, T. David, L. Favre, M. Abbarchi, M. Naffouti, J. Osmond, A. Delobbe, P. Sudraud, I. Berbezier, Ordered arrays of Au catalysts by FIB assisted heterogeneous dewetting. Nanotechnology 26(5), 505602 (2015)

    Article  CAS  Google Scholar 

  22. J.-M. Shieh, Y.-F. Lai, W.-X. Ni, H.-C. Kuo, C.-Y. Fang, J.Y. Huang, C.-L. Pan, Appl. Phys. Lett. 90, 051105 (2007)

    Article  Google Scholar 

  23. J.-M. Shieh, W.-C. Yu, J.Y. Huang, C.-K. Wang, B.-T. Dai, H.-Y. Jhan, C.-W. Hsu, H.-C. Kuo, F.-L. Yang, C.-L. Pan, Appl. Phys. Lett. 94, 241108 (2009)

    Article  Google Scholar 

  24. T. Lin, X. Liu, B. Zhou, Z. Zhan, A.N. Cartwright, M.T. Swihart, Adv. Funct. Mater. 24(38), 6016–6022 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at Jouf University under Grant No (DSR-2021-03-03159).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: MA and IB contributed to study conception and design and draft manuscript preparation; MA, SAA, IOA, and LF and IB contributed to data collection and analysis and interpretation of the results. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Mansour Aouassa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouassa, M., Algarni, S.A., Althobaiti, I.O. et al. High-sensitive MIS structures with silicon nanocrystals grown via solid-state dewetting of silicon-on-insulator for solar cell and photodetector applications. J Mater Sci: Mater Electron 33, 19376–19384 (2022). https://doi.org/10.1007/s10854-022-08774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08774-w

Navigation