Skip to main content
Log in

Enhancement of electrical properties by including nano-aluminum nitride to micro-silicon carbide/silicone elastomer composites for potential power module packaging applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports an enhancement of the electrical properties of micro-silicon carbide/silicone elastomer (m-SiC/SE) composites by adding nano-aluminum nitride (n-AlN) for the next-generation power module encapsulation applications. The electrical properties, such as nonlinear conductivity, DC breakdown strength, dielectric spectroscopy, and thermally stimulated discharge current, of the pure SE, m-SiC/SE microcomposite, and m-SiC/n-AlN/SE hybrid composites added with 1 wt%, 3 wt%, and 5 wt% n-AlN fillers are investigated. The m-SiC/n-AlN/SE hybrid composites exhibit better nonlinear conductivity characteristics and enhanced DC breakdown strength than the m-SiC/SE microcomposite. Amongst all materials, the 3 wt% n-AlN addition in the hybrid composite has the best enhancement effect on the nonlinear conductivity characteristics and DC breakdown strength. However, it has the lowest low-frequency real and imaginary permittivities among the SE micro and hybrid composites. Furthermore, a m-SiC/n-AlN heterogenous interface model is proposed to explain the mechanism of enhanced electrical properties of the m-SiC/n-AlN/SE composites. It is found that higher m-SiC/n-AlN heterogenous interface barriers are constructed after adding n-AlN fillers, thereby inhibiting the charge carrier transport at low electric fields. In contrast, more conductive paths are activated at high electric fields by the contacted m-SiC fillers via n-AlN fillers, promoting the charge carrier transport at high electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.L. Locatelli, R. Khazaka, S. Diaham, C.D. Pham, M. Bechara, S. Dinculescu, P. Bidan, IEEE Trans. Power Electron. 29, 2281–2288 (2014)

    Article  Google Scholar 

  2. E. Ogliani, L.Y. Yu, P. Mazurek, A.L. Skov, Polym. Degrad. Stab. 157, 175–180 (2018)

    Article  CAS  Google Scholar 

  3. Y.Y. Yao, Z. Chen, G.Q. Lu, D. Boroyevich, K.D.T. Ngo, IEEE Trans. Compon. Packag. Manuf. Technol. 5, 168–181 (2015)

    Article  CAS  Google Scholar 

  4. B.Y. Zhang, M. Ghassemi, Y.X. Zhang, IEEE Trans. Dielectr. Electr. Insul. 28, 290–302 (2021)

    Article  CAS  Google Scholar 

  5. Z. Chen, Y.Y. Yao, W.L. Zhang, D. Boroyevich, K. Ngo, P. Mattavelli, R. Burgos, in IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), pp. 52–59 (2013)

  6. L. Donzel, J. Schuderer, IEEE Trans. Dielectr. Electr. Insul. 19, 955–959 (2012)

    Article  CAS  Google Scholar 

  7. W. Pan, Y. Wang, H. Ding, E. Shen, Z. Zhang, X. Yang, Z. Wang, S. Akram, IEEE Trans. Dielectr. Electr. Insul. 28, 1588–1603 (2021)

    Article  CAS  Google Scholar 

  8. Y. Xue, X. Zhou, T. Zhan, B. Jiang, Q. Guo, X. Fu, K. Shimamura, Y. Xu, T. Mori, P. Dai, Y. Bando, C. Tang, D. Golberg, Adv. Funct. Mater. 28, 1801205 (2018)

    Article  CAS  Google Scholar 

  9. B.X. Du, C. Han, Z.L. Li, IEEE Trans. Dielectr. Electr. Insul. 28, 996–1004 (2021)

    Article  CAS  Google Scholar 

  10. X. Yang, J. He, J. Hu, J. Appl. Polym. Sci. 132, 42645 (2015)

    Google Scholar 

  11. Z. Wang, J.K. Nelson, H. Hillborg, S. Zhao, L.S. Schadler, Adv. Mater. 24, 3134–3137 (2012)

    Article  CAS  Google Scholar 

  12. X. Yang, J. Hu, S. Chen, J. He, Sci. Rep. 6, 30597 (2016)

    Article  CAS  Google Scholar 

  13. X.L. Zhao, X. Yang, Q. Li, J.L. He, J. Hu, Compos. Sci. Technol. 150, 187–193 (2017)

    Article  CAS  Google Scholar 

  14. Q.G. Chi, Y.Y. Hao, T.D. Zhang, C.H. Zhang, Q.G. Chen, X. Wang, J. Mater. Sci. Mater. Electron. 29, 19678–19688 (2018)

    Article  CAS  Google Scholar 

  15. Y.L. Wang, J.D. Wu, Y. Yin, T. Han, IEEE Trans. Dielectr. Electr. Insul. 27, 377–385 (2020)

    Article  CAS  Google Scholar 

  16. X.R. Chen, Q.L. Wang, N. Ren, C. Dai, M. Awais, A. Paramane, IEEE Trans. Dielectr. Electr. Insul. 28, 2161–2169 (2021)

    Article  CAS  Google Scholar 

  17. M. Mesgarpour Tousi, M. Ghassemi, IEEE Trans. Dielectr. Electr. Insul. 27, 305–313 (2020)

    Article  Google Scholar 

  18. M. Wahlander, F. Nilsson, R.L. Andersson, A. Carlmark, H. Hillborg, E. Malmstrom, Macromol. Rapid Commun. 38, 1700291 (2017)

    Article  CAS  Google Scholar 

  19. R. Metz, C. Blanc, S. Dominguez, S. Tahir, R. Leparc, M. Hassanzadeh, Mater. Lett. 292, 129611 (2021)

    Article  CAS  Google Scholar 

  20. X. Wang, J.K. Nelson, L.S. Schadler, H. Hillborg, IEEE Trans. Dielectr. Electr. Insul. 17, 1687–1696 (2010)

    Article  CAS  Google Scholar 

  21. S. Li, G. Yin, S. Bai, J. Li, IEEE Trans. Dielectr. Electr. Insul. 18, 1535–1543 (2011)

    Article  CAS  Google Scholar 

  22. Y. Han, S. Li, D. Min, IEEE Trans. Dielectr. Electr. Insul. 24, 3154–3164 (2017)

    Article  CAS  Google Scholar 

  23. A.K. Jonscher, IEEE Trans. Dielectr. Electr. Insul. 27, 407–423 (1992)

    Article  Google Scholar 

  24. C.Y. Teng, Y.X. Zhou, S.H. Li, L. Zhang, Y.X. Zhang, Z.L. Zhou, L. Zhao, IEEE Trans. Dielectr. Electr. Insul. 27, 512–520 (2020)

    Article  CAS  Google Scholar 

  25. P.F. Chu, H. Zhang, J. Zhao, F. Gao, Y.F. Guo, B. Dang, Z. Zhang, Compos. Part. A Appl. Sci. Manuf. 99, 139–148 (2017)

    Article  CAS  Google Scholar 

  26. Y. Zhou, C. Yuan, S.J. Wang, Y.J. Zhu, S. Cheng, X. Yang, Y. Yang, J. Hu, J.L. He, Q. Li, Energy Storage Mater. 28, 255–263 (2020)

    Article  Google Scholar 

  27. J.G. Simmons, G.W. Taylor, Phys. Rev. B 5, 1619–1629 (1972)

    Article  Google Scholar 

  28. E. He, S. Chen, X. Wang, in International Conference on Properties & Applications of Dielectric Materials (ICPADM), pp. 922–925 (2000)

  29. T. Abe, M. Suenaga, A. Imakiire, M. Kozako, M. Hikita, H. Shiota, in International Conference on Integrated Power Electronics Systems (CIPS), pp. 155–160 (2018)

Download references

Acknowledgements

This work was funded by the Key Project of Natural Science Foundation of Zhejiang Province (LZ22E070001), the National Natural Science Foundation of China (52007165), and the One-hundred Talents Program of Zhejiang University (A).

Funding

This work was supported by the Key Project of Natural Science Foundation of Zhejiang Province (Grant No: LZ22E070001), the National Natural Science Foundation of China (Grant No: 52007165), and the One-hundred Talents Program of Zhejiang University (Grant No: A).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by Qilong Wang and Xiaofan Huang. The first draft of the manuscript was written by Qilong Wang. Funding acquisition and review and editing were performed by Xiangrong Chen and Na Ren. Review and editing were performed by Awais Muhammad and Ashish Paramane. All authors read and approved the final manuscript

Corresponding author

Correspondence to Xiangrong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The work described has not been submitted elsewhere for publication, in whole or in part, and all the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, Q., Huang, X. et al. Enhancement of electrical properties by including nano-aluminum nitride to micro-silicon carbide/silicone elastomer composites for potential power module packaging applications. J Mater Sci: Mater Electron 33, 18768–18785 (2022). https://doi.org/10.1007/s10854-022-08726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08726-4

Navigation