Skip to main content

Advertisement

Log in

VOC over 1.2 V for Cs2AgBiBr6 solar cells based on formamidinium acetate additive

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cs2AgBiBr6 is a lead-free perovskite that shows great potential to solve the toxicity and instability of organic–inorganic lead perovskite. However, because of the poor interface contact and inferior film quality, the open-circuit voltage and the power conversion efficiency of the solar cells are inhibited. Herein, the Cs2AgBiBr6 film quality is improved by adding formamidinium acetate into the precursor solution. With additive regulation, the grain size increases and the film surface is more smooth. The crystal structure remains unchanged, and the defect density decreases. Correspondingly, the average power conversion efficiency of the target device increases more than 30% than the control device. The best efficiency approaches 2.09%, and the open-circuit voltage is surprisingly high at 1.23 V, the highest value reported for Cs2AgBiBr6 solar cells. Moreover, the device remains more than 90% of its initial efficiency after 40 days of storage under environmental conditions, showing excellent stability. This work is therefore helpful for enhancing the efficiency and stability of inorganic lead-free perovskite solar cells toward future commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2019). https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  2. National Renewable Energy Laboratory. Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 6 Jan 2022

  3. M. Nayak, A.J. Akthar, A. Guchhait, S.K. Saha, A roadmap towards stable perovskite solar cells: prospective on substitution of organic (A) & inorganic (B) cations. J. Mater. Sci.: Mater. Electron. 32, 18466–18511 (2021). https://doi.org/10.1007/s10854-021-06431-2

    Article  CAS  Google Scholar 

  4. Md.A. Karim, K. Matsuishi, T.H. Chowdhury, W.I. Chowdhury, M. Abdel-shakour, A. Islam, Bathocuproine interfacial layer leads to solid improvement of reproducibility and stability of Pb-free CsBi3I10 based perovskite solar cells. J. Mater. Sci.: Mater. Electron. 33, 8114–8126 (2022). https://doi.org/10.1007/s10854-022-07961-z

    Article  CAS  Google Scholar 

  5. M. Zhang, Z. Zhang, H. Cao, T. Zhang, H. Yu, J. Du, Y. Shen, X. Zhang, J. Zhu, P. Chen, M. Wang, Recent progress in inorganic tin perovskite solar cells. Mater. Today Energy 23, 100891 (2022). https://doi.org/10.1016/j.mtener.2021.100891

    Article  CAS  Google Scholar 

  6. Z. Yi, N.H. Ladi, X. Shai, H. Li, Y. Shen, M. Wang, Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? Nanoscale Adv. 1, 1276–1289 (2019). https://doi.org/10.1039/C8NA00416A

    Article  Google Scholar 

  7. R. Nie, R.R. Sumukam, S.H. Reddy, M. Banavoth, S.I. Seok, Lead-free perovskite solar cells enabled by hetero-valent substitutes. Energy Environ. Sci. 13, 2363–2385 (2022). https://doi.org/10.1039/D0EE01153C

    Article  Google Scholar 

  8. A. Kulkarni, T. Singh, A.K. Jena, P. Pinpithak, M. Ikegami, T. Miyasaka, Vapor annealing controlled crystal growth and photovoltaic performance of bismuth triiodide embedded in mesostructured configurations. ACS Appl. Mater. Interfaces 10, 9547–9554 (2018). https://doi.org/10.1021/acsami.8b00430

    Article  CAS  Google Scholar 

  9. A. Kulkarni, T. Singh, M. Ikegami, T. Miyasaka, Photovoltaic enhancement of bismuth halide hybrid perovskite by N-methyl pyrrolidone-assisted morphology conversion. RSC Adv. 7, 9456 (2017). https://doi.org/10.1039/C6RA28190G

    Article  CAS  Google Scholar 

  10. T. Singh, A. Kulkarni, M. Ikegami, T. Miyasaka, Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces 8, 14542–14547 (2016). https://doi.org/10.1021/acsami.6b02843

    Article  CAS  Google Scholar 

  11. E. Greul, M.L. Petrus, A. Binek, P. Docampob, T. Bein, Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 5, 19972–19981 (2017). https://doi.org/10.1039/C7TA06816F

    Article  CAS  Google Scholar 

  12. W. Gao, C. Ran, J. Xi, B. Jiao, W. Zhang, M. Wu, X. Hou, Z. Wu, High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency. ChemPhysChem 19, 1696–1700 (2018). https://doi.org/10.1002/cphc.201800346

    Article  CAS  Google Scholar 

  13. C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, S. Wang, Z. Chen, L. Xiao, The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 5, 1700759 (2018). https://doi.org/10.1002/advs.201700759

    Article  CAS  Google Scholar 

  14. B. Wang, N. Li, L. Yang, C.X. Dall’Agnese, A.K. Jena, T. Miyasaka, X. Wang, Organic dye/Cs2AgBiBr6 double perovskite heterojunction solar cells. J. Am. Chem. Soc. 143, 14877–14883 (2021). https://doi.org/10.1021/jacs.1c07200

    Article  CAS  Google Scholar 

  15. J. Li, J. Duan, J. Du, X. Yang, Y. Wang, P. Yang, Y. Duan, Q. Tang, Alkali metal ion-regulated lead-free, all-inorganic double perovskites for HTM-free, carbon-based solar cells. ACS Appl. Mater. Interfaces 12, 47408–47415 (2020). https://doi.org/10.1021/acsami.0c11770

    Article  CAS  Google Scholar 

  16. M. Wang, P. Zeng, S. Bai, J. Gu, F. Li, Z. Yang, M. Liu, High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Sol. RRL 2, 1800217 (2018). https://doi.org/10.1002/solr.201800217

    Article  CAS  Google Scholar 

  17. F. Igbari, R. Wang, Z. Wang, X. Ma, Q. Wang, K. Wang, Y. Zhang, L. Liao, Y. Yang, Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells. Nano Lett. 19, 2066–2073 (2019). https://doi.org/10.1021/acs.nanolett.9b00238

    Article  CAS  Google Scholar 

  18. Y. Liu, L. Zhang, M. Wang, Y. Zhong, M. Huang, Y. Long, H. Zhu, Bandgap-tunable double-perovskite thin films by solution processing. Mater. Today 28, 25–30 (2019). https://doi.org/10.1016/j.mattod.2019.04.023

    Article  CAS  Google Scholar 

  19. N. Pai, J. Lu, M. Wang, A.S.R. Chesman, A. Seeber, P.V. Cherepanov, D.C. Senevirathna, T.R. Gengenbach, N.V. Medhekar, P.C. Andrews, U. Bachbcef, A.N. Simonov, Enhancement of the intrinsic light harvesting capacity of Cs2AgBiBr6 double perovskite via modification with sulphide. J. Mater. Chem. A 8, 2008–2020 (2020). https://doi.org/10.1039/C9TA10422D

    Article  CAS  Google Scholar 

  20. X. Yang, Y. Chen, P. Liu, H. Xiang, W. Wang, R. Ran, W. Zhou, Z. Shao, Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Adv. Funct. Mater. 30, 2001557 (2020). https://doi.org/10.1002/adfm.202001557

    Article  CAS  Google Scholar 

  21. B. Wang, N. Li, L. Yang, C.X. Dall’Agnese, A.K. Jena, S. Sasaki, T. Miyasaka, H. Tamiaki, X. Wang, Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cells. J. Am. Chem. Soc. 143, 2207–2211 (2021). https://doi.org/10.1021/jacs.0c12786

    Article  CAS  Google Scholar 

  22. J. Li, X. Meng, Z. Wu, Y. Duan, R. Guo, W. Xiao, Y. Zhang, Y. Li, Y. Shen, W. Zhang, G. Shao, Pinning bromide ion with ionic liquid in lead-free Cs2AgBiBr6 double perovskite solar cells. Adv. Funct. Mater. 32, 2112991 (2022). https://doi.org/10.1002/adfm.202112991

    Article  CAS  Google Scholar 

  23. F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020). https://doi.org/10.1002/aenm.201902579

    Article  CAS  Google Scholar 

  24. X. Yang, A. Xie, H. Xiang, W. Wang, R. Ran, W. Zhou, Z. Shao, First investigation of additive engineering for highly efficient Cs2AgBiBr6-based lead-free inorganic perovskite solar cells. Appl. Phys. Rev. 8, 041402 (2021). https://doi.org/10.1063/5.0059542

    Article  CAS  Google Scholar 

  25. H. Wu, Y. Wang, A. Liu, J. Wang, B.J. Kim, Y. Liu, Y. Fang, X. Zhang, G. Boschloo, E.M.J. Johansson, Methylammonium bromide assisted crystallization for enhanced lead-free double perovskite photovoltaic performance. Adv. Funct. Mater. 32, 2109402 (2022). https://doi.org/10.1002/adfm.202109402

    Article  CAS  Google Scholar 

  26. R. Fu, Y. Zhao, W. Zhou, Q. Li, Y. Zhao, Q. Zhao, Ultrahigh open-circuit voltage for high performance mixed-cation perovskite solar cells using acetate anions. J. Mater. Chem. A 6, 14387–14391 (2018). https://doi.org/10.1039/C8TA04453H

    Article  CAS  Google Scholar 

  27. R. Xu, H. Dong, P. Li, X. Cao, H. Li, J. Li, Z. Wu, Formamidine acetate induces regulation of crystallization and stabilization in Sn-based perovskite solar cells. ACS Appl. Mater. Interfaces 13, 33218–33225 (2021). https://doi.org/10.1021/acsami.1c05097

    Article  CAS  Google Scholar 

  28. J. Zhang, Z. Wang, A. Mishra, M. Yu, M. Shasti, W. Tress, D.J. Kubicki, C.E. Avalos, H. Lu, Y. Liu, B.I. Carlsen, A. Agarwalla, Z. Wang, W. Xiang, L. Emsley, Z. Zhang, M. Grätzel, W. Guo, Intermediate phase enhances inorganic perovskite and metal oxide interface for efficient photovoltaics. Joule 4, 222–234 (2020). https://doi.org/10.1016/j.joule.2019.11.007

    Article  CAS  Google Scholar 

  29. Z. Chen, Q. Wang, Y. Xu, R. Zhou, L. Zhang, Y. Huang, L. Hu, M. Lyu, J. Zhu, Regulating the film growth and reducing the defects for efficient CsPbIBr2 solar cells. ACS Appl. Mater. Interfaces 13, 24654–24661 (2021). https://doi.org/10.1021/acsami.1c02377

    Article  CAS  Google Scholar 

  30. X. Zhang, H. Xiong, J. Qi, C. Hou, Y. Li, Q. Zhang, H. Wang, Antisolvent-derived intermediate phases for low-temperature flexible perovskite solar cells. ACS Appl. Energy Mater. 1, 6477–6486 (2018). https://doi.org/10.1021/acsaem.8b01413

    Article  CAS  Google Scholar 

  31. W. Tress, M.T. Sirtl, Cs2AgBiBr6 double perovskites as lead-free alternatives for perovskite solar cells? Sol. RRL 6, 2100770 (2022). https://doi.org/10.1002/solr.202100770

    Article  CAS  Google Scholar 

  32. Y. Bekenstein, J.C. Dahl, J. Huang, W.T. Osowiecki, J.K. Swabeck, E.M. Chan, P. Yang, A.P. Alivisatos, The making and breaking of lead-free double perovskite nanocrystals of cesium silver–bismuth halide compositions. Nano Lett. 18, 3502–3508 (2018). https://doi.org/10.1021/acs.nanolett.8b00560

    Article  CAS  Google Scholar 

  33. X.-G. Zhao, J.-H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.-H. Wei, L. Zhang, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017). https://doi.org/10.1021/jacs.6b09645

    Article  CAS  Google Scholar 

  34. J. Li, F. Yan, P. Yang, Y. Duan, J. Duan, Q. Tang, Suppressing interfacial shunt loss via functional polymer for performance improvement of lead-free Cs2AgBiBr6 double perovskite solar cells. Sol. RRL 6, 2100791 (2022). https://doi.org/10.1002/solr.202100791

    Article  CAS  Google Scholar 

  35. V. Sarritzu, N. Sestu, D. Marongiu, X. Chang, S. Masi, A. Rizzo, S. Colella, F. Quochi, M. Saba, A. Mura, G. Bongiovanni, Optical determination of Shockley–Read–Hall and interface recombination currents in hybrid perovskites. Sci. Rep. 7, 44629 (2017). https://doi.org/10.1038/srep44629

    Article  CAS  Google Scholar 

  36. W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, J. Tang, Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photon. 11, 726–732 (2017). https://doi.org/10.1038/s41566-017-0012-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The acknowledgements come at the end of an article after the conclusions and before the notes and references. This work was supported by the National Key Research and Development Program of China (2019YFE0101300) and the Hefei Municipal Natural Science Foundation (2021040).

Funding

This work was supported by National Key Research and Development Program of China (Grant No. 2019YFE0101300), Hefei Municipal Natural Science Foundation (Grant No. 2021040).

Author information

Authors and Affiliations

Authors

Contributions

Research idea: JZ, ML; Methodology and writing-original draft preparation: AY; Data curation: AY, LZ; Validation: LZ, QW; Conceptualization and investigation: YX; Formal analysis: ML, HL; Resources: QW, HL; Writing-review and editing: JZ; Supervision: ML, JZ.

Corresponding author

Correspondence to Jun Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10854_2022_8724_MOESM1_ESM.pdf

Supplementary file1 (PDF 587 KB)—PL and TRPL spectra; JV curves of forward scan and reverse scan; Statistic photovoltaic parameters; Fitted lifetime parameters; Photovoltaic parameters and hyssteresis index.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Zhang, L., Xu, Y. et al. VOC over 1.2 V for Cs2AgBiBr6 solar cells based on formamidinium acetate additive. J Mater Sci: Mater Electron 33, 18758–18767 (2022). https://doi.org/10.1007/s10854-022-08724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08724-6

Navigation