Skip to main content
Log in

Impedance studies of free-standing, flexible thin films of PVDF filled with gallium nitride nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible, free-standing composite films of poly(vinylidene fluoride) (PVDF) with Gallium Nitride (GaN) as fillers, in varying concentrations, were synthesized by sol–gel method. Modulations in the microstructural, morphological and dielectric properties, due to the addition of fillers, were investigated. Modifications in the spherocrystal structure, their dimensions and their number density were observed. Microstructural studies confirmed the presence of GaN nanoparticles in the matrix. FTIR and Raman spectroscopy revealed the presence of the three polymorphs of PVDF in the composite films. The dielectric constant of the composite films were found to increase with the increase in the filler concentration, to almost ~ 6 times that of the value for the pristine film due to the interfacial polarization playing between the polymer chains and the filler nanoparticles. Low values of dielectric constant at higher frequencies were observed due to the contribution of dipolar polarization. A peak-to-peak voltage of ~ 5.4 V, from a triboelectric nanogenerator fabricated using a 1 wt% composite films, was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. S. Sarkar, S. Garain, D. Mandal, K.K. Chattopadhyay, RSC Adv. 4, 48220 (2014). https://doi.org/10.1039/c4ra08427f

    Article  CAS  Google Scholar 

  2. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  3. P. Saxena, P. Shukla, Adv. Compos. Hybrid. Mater. 4, 8 (2021). https://doi.org/10.1007/s42114-021-00217-0

    Article  CAS  Google Scholar 

  4. V. Sencadas, R. Gregorio, S. Lanceros-Méndez, J. Macromol. Sci. Part B 48, 514 (2009). https://doi.org/10.1080/00222340902837527

    Article  CAS  Google Scholar 

  5. B. Mohammadi, A.A. Yousefi, S.M. Bellah, Polym. Test. 26, 42 (2007). https://doi.org/10.1016/j.polymertesting.2006.08.003

    Article  CAS  Google Scholar 

  6. P. Singh, H. Borkar, B.P. Singh, V.N. Singh, A. Kumar, AIP Adv. 4, 87117 (2014). https://doi.org/10.1063/1.4892961

    Article  CAS  Google Scholar 

  7. A. Jain, K.J. Prashanth, A.K. Sharma, A. Jain, Polym. Eng. Sci. 55, 1589 (2015). https://doi.org/10.1002/pen.24088

    Article  CAS  Google Scholar 

  8. J. González-Benito, D. Olmos, J.M. Martínez-Tarifa, G. González-Gaitano, F.A. Sánchez, J. Appl. Polym. Sci. 136, 47788 (2019). https://doi.org/10.1002/app.47788

    Article  CAS  Google Scholar 

  9. M.B. Pereira, E.M. Diniz, S. Guerini, Adv. Condens. Matter Phys. 2015, 469487 (2015). https://doi.org/10.1155/2015/469487

    Article  Google Scholar 

  10. W.S. Su, Y.F. Chen, C.L. Hsiao, L.W. Tu, Appl. Phys. Lett. 90, 63110 (2007). https://doi.org/10.1063/1.2472539

    Article  CAS  Google Scholar 

  11. M.A.H. Khan, M.V. Rao, Sensors (Switzerland) 20, 1 (2020). https://doi.org/10.3390/s20143889

    Article  CAS  Google Scholar 

  12. M.S. Kang, C.H. Lee, J.B. Park, H. Yoo, G.C. Yi, Nano Energy 1, 391 (2012). https://doi.org/10.1016/j.nanoen.2012.03.00

    Article  CAS  Google Scholar 

  13. S. Satapathy, S. Pawar, P.K. Gupta, K.B. RVarma, Bull. Mater. Sci. 34, 727 (2011). https://doi.org/10.1007/s12034-011-0187-0

    Article  CAS  Google Scholar 

  14. M. Shoorangiz, Z. Sherafat, E. Bagherzadeh, Ceram. Int. 48, 15180 (2022). https://doi.org/10.1016/j.ceramint.2022.02.047

    Article  CAS  Google Scholar 

  15. Y. Zhang, T. Pan, Z. Yang, Chem. Eng. J. 389, 124433 (2020). https://doi.org/10.1016/j.cej.2020.124433

    Article  CAS  Google Scholar 

  16. Y. Zhang, Z. Yang, T. Pan, H. Gao, H. Guan, J. Xu, Z. Zhang, Compos. Part. A  Appl. Sci. Manuf. 137, 105994 (2020). https://doi.org/10.1016/j.compositesa.2020.105994

    Article  CAS  Google Scholar 

  17. A. Thakur, J. Mandeep, S. Dam, N.V.C. Shekar, G. Amarendra, S. Hussain, P.V. Rajesh, A. Saha, Polym. Cryst. 4, e10164 (2021). https://doi.org/10.1002/pcr2.10164

    Article  CAS  Google Scholar 

  18. E. Kabir, M. Khatun, L. Nasrin, M.J. Raihan, M. Rahman, J. Phys. D Appl. Phys. 50, 163002 (2017). https://doi.org/10.1088/1361-6463/aa5f85

    Article  CAS  Google Scholar 

  19. K. Choi, W. Choi, C. Yu, Y.T. Park, J. Nanomater. 2017, 6590121 (2017). https://doi.org/10.1155/2017/6590121

    Article  CAS  Google Scholar 

  20. U. Yaqoob, G.S. Chung, Procedia Eng. 168, 1074 (2016). https://doi.org/10.1016/j.proeng.2016.11.343

    Article  CAS  Google Scholar 

  21. A. Thakur, S. Dam, D. Nath, N.V. Chandra Shekar, G. Amarendra, S. Hussain, Polymers (Guildf) 186, 122074 (2020). https://doi.org/10.1016/j.polymer.2019.122074

    Article  CAS  Google Scholar 

  22. X. Cai, T. Lei, D. Sun, L. Lin, RSC Adv. 7, 15382 (2017). https://doi.org/10.1039/c7ra01267e

    Article  CAS  Google Scholar 

  23. N.A. Hoque, P. Thakur, N. Bala, A. Kool, S. Das, P.P. Ray, RSC Adv. 6, 29931 (2016). https://doi.org/10.1039/C5RA27883J

    Article  CAS  Google Scholar 

  24. A.N. Arshad, M.H.M. Wahid, M. Rusop, W.H.A. Majid, R.H.Y. Subban, M.D. Rozana, J. Nanomater. 2019, 5961563 (2019). https://doi.org/10.1155/2019/5961563

    Article  CAS  Google Scholar 

  25. C. Wang, H. Gao, D. Liang, S. Liu, H. Zhang, H. Guan, Y. Wu, Y. Zhang, Adv. Compos. Hybrid. Mater. (2022). https://doi.org/10.1007/s42114-022-00482-7

    Article  Google Scholar 

  26. P.I. Devi, K. Ramachandran, J. Exp. Nanosci. 6, 281 (2011). https://doi.org/10.1080/17458080.2010.497947

    Article  CAS  Google Scholar 

  27. H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, A. Kallel, Compos. Part. B Eng. 45, 1199 (2013). https://doi.org/10.1080/17458080.2010.497947

    Article  CAS  Google Scholar 

  28. B.M. Baraker, B. Lobo, Bull. Mater. Sci. 42, 18 (2019). https://doi.org/10.1007/s12034-018-1690-3

    Article  CAS  Google Scholar 

  29. H. Gao, C. Wang, Z. Yang, Y. Zhang, Compos. Sci. Technol. 213, 108896 (2021). https://doi.org/10.1016/j.compscitech.2021.108896

    Article  CAS  Google Scholar 

  30. S. Limpijumnong, W.R.L. Lambrecht, Phys. Rev. B Condens. Matter Mater. Phys. 63, 11 (2001). https://doi.org/10.1103/PhysRevB.63.104103

    Article  CAS  Google Scholar 

  31. C. Hou, Z. Bao, H. Sun, Y. Yin, X. Li, J. Mater. 6, 371 (2020). https://doi.org/10.1016/j.jmat.2019.04.006

    Article  Google Scholar 

  32. X. Xiong, D. Shen, Q. Zhang, H. Yang, J. Wen, Z. Zhou, Compos. Commun. 25, 100682 (2021). https://doi.org/10.1016/j.coco.2021.100682

    Article  Google Scholar 

  33. Y. Zhu, Y. Zhu, X. Huang, J. Chen, Q. Li, J. He, P. Jiang, Adv. Energy Mater. 9, 1901826 (2019). https://doi.org/10.1002/aenm.201901826

    Article  CAS  Google Scholar 

  34. C. Zhu, J. Yin, J. Li, Y. Li, H. Zhao, D. Yue, L. Pan, J. Wang, Y. Feng, X. Liu, J. Appl. Polym. Sci. 138, 50244 (2021). https://doi.org/10.1002/app.50244

    Article  CAS  Google Scholar 

  35. Q. Cao, W. Zhu, W. Chen, X. Chen, R. Yang, S. Yang, H. Zhang, X. Gui, J. Chen, ACS Appl. Mater. Interfaces 14, 8226 (2022). https://doi.org/10.1021/acsami.1c18544

    Article  CAS  Google Scholar 

  36. R. Guo, H. Luo, D. Zhai, Z. Xiao, H. Xie, Y. Liu, X. Zhou, D. Zhang, Chem. Eng. J. 437, 135497 (2022). https://doi.org/10.1016/j.cej.2022.135497

    Article  CAS  Google Scholar 

  37. Y. Liu, H. Luo, D. Zhai, L. Zeng, Z. Xiao, Z. Hu, X. Wang, D. Zhang, ACS Appl. Mater. Interfaces 14, 19376 (2022). https://doi.org/10.1021/acsami.2c00969

    Article  CAS  Google Scholar 

  38. Y. Zhou, W. Deng, J. Xu, J. Chen, Cell Rep. Phys. Sci. 1, 100142 (2020). https://doi.org/10.1016/j.xcrp.2020.100142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director, UGC-DAE CSR, the Centre-Director, UGC-DAE CSR, Indore Centre and the Scientist In-charge, UGC-DAE CSR, Kalpakkam Node, for their support and encouragement. The authors would also like to thank Dr. Md. Najam Anwar, Dr. H. Jena, Dr. Ramanathan, Mr. Mahima Kumar and Mr. Swaroop Chandra from IGCAR, for extending some of their facilities.

Funding

The authors declare, that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AT: Data Acquisition and Curation; Formal analysis; Investigation; Writing; Editing. MJ: Data Acquisition and Curation; Editing. SD: Data Acquisition and Curation; Editing. SH: Conceptualization; Funding Acquisition; Project Administration; Resources; Software; Supervision; Validation; Writing-review and Editing.

Corresponding author

Correspondence to Shamima Hussain.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A., Jangra, M., Dam, S. et al. Impedance studies of free-standing, flexible thin films of PVDF filled with gallium nitride nanoparticles. J Mater Sci: Mater Electron 33, 18658–18672 (2022). https://doi.org/10.1007/s10854-022-08715-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08715-7

Navigation