Skip to main content
Log in

Improving the physical properties of polycrystalline-deficient Pr0.8Sr0.2−xxMnO3 (0 ≤ x ≤ 0.2) compounds for electronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Deficient strontium effects upon structural and spectroscopic properties of Pr0.8Sr0.2MnO3 have been investigated. Pr0.8Sr0.2−xxMnO3 (0 ≤ x ≤ 0.2) powder samples have been elaborated by the conventional ceramic method. All the samples crystallized in the orthorhombic perovskite system with Pnma (for x = 0 and 0.05) and Pbnm (for x = 0.1 and 0.2) space groups. The impedance spectroscopy measurements, the AC conductivity was investigated in the frequency range 40 to 5 × 106 Hz and in the temperature range 80–500 K. DC measurements show that the studied compounds exhibit a semiconductor behavior in the temperature range studied. We have demonstrated that the conduction mechanism is governed by the hopping process at high temperatures as observed for doped perovskite materials. The AC conductivity results were well described by the Jonscher power law. The evolution of the frequency exponent s was determined in order to investigate the conduction mechanism in deficient structures. A discrepancy between the results obtained with the parent sample and deficient structures was observed. Analysis of the complex impedance shows that our structures obey Cole–Cole model. Nyquist plots were obtained using the Maxwell–Wagner equivalent circuit model. The evolution of the real and imaginary parts ε′ and ε″ of the permittivity was studied as a function of frequency, temperature, and strontium deficiency. Both ε′ and ε″ exhibit a strong dependence on these parameters. A step-like decrease in the dielectric constant ε′ was observed which may have originated from the space charge polarization and blocking electrode effect. The dielectric loss ε″ decreased with increasing frequency but increased with temperature for all studied samples. This result was correlated with the conduction mechanism which is governed by grain boundaries at low frequencies and grains at high frequencies. In addition, it affected the capacitance values in each frequency interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author. We would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

References

  1. A. Ben Jazia Kharrat, E.K. Hlil, W. Boujelben, Mater. Res. Express. 5, 126107 (2018)

    Article  CAS  Google Scholar 

  2. A. Ben Jazia Kharrat, E.K. Hlil, W. Boujelben, J. Alloys. Compd. 739, 101–113 (2018)

    Article  CAS  Google Scholar 

  3. A. Ben Jazia Kharrat, W. Boujelben, J. Low Temp. Phys. 197, 357–378 (2019)

    Article  CAS  Google Scholar 

  4. R.N. Bhowmik, A. Poddar, A. Saravanan, J. Magn. Magn. Mater. 322, 2340–2349 (2010)

    Article  CAS  Google Scholar 

  5. A. Ben Jazia Kharrat, S. Moussa, N. Moutiaa, K. Khirouni, W. Boujelben, J. Alloys. Compd. 724, 389–399 (2017)

    Article  CAS  Google Scholar 

  6. A. Ben Jazia Kharrat, M. Bourouina, N. Moutia, K. Khirouni, W. Boujelben, J. Alloys. Compd. 741, 723–733 (2018)

    Article  CAS  Google Scholar 

  7. W. Ncib, A. Ben Jazia Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, J. Alloys. Compd. 768, 249–262 (2018)

    Article  CAS  Google Scholar 

  8. H.E. Sekrafi, A. Ben Jazia Kharrat, M.A. Wederni, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Mater. Res. Bull. 111, 329–337 (2019)

    Article  CAS  Google Scholar 

  9. V.S. Kolat, H. Gencer, M. Gunes, S. Atalay, Mater. Sci. Eng. B 140, 212 (2007)

    Article  CAS  Google Scholar 

  10. Z.C. Xia, S.L. Yuan, W. Feng, L.J. Zhang, G.H. Zhang, J. Tang, L. Liu, D.W. Liu, Q.H. Zheng, L. Chen, Z.H. Fang, S. Liu, C.Q. Tang, Solid State Commun. 127, 567 (2003)

    Article  CAS  Google Scholar 

  11. N. Khare, D.P. Singh, H.K. Gupta, P.K. Siwach, O.N. Srivastava, J. Phys. Chem. Sol. 65, 867 (2004)

    Article  CAS  Google Scholar 

  12. A. Ioachim, M.I. Toacsan, M.G. Banciu, L. Nedelcu, F. Vasiliu, H.V. Alexandru, C. Berbecaru, G. Stoica, Prog. Solid State Chem. 35, 513 (2007)

    Article  CAS  Google Scholar 

  13. H. Zhou, H. Wang, Y. Chen, K. Li, X. Yao, Mater. Chem. Phys. 113, 1 (2009)

    Article  CAS  Google Scholar 

  14. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)

    Article  CAS  Google Scholar 

  15. P.G. De Gennes, Phys. Rev. 118, 141 (1960)

    Article  Google Scholar 

  16. H.A. Jahn, Proc. R. Soc. (London) A164, 117 (1938)

    Google Scholar 

  17. H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, Y. Tokura, Science 270, 961 (1995)

    Article  CAS  Google Scholar 

  18. P.M. Woodward, T. Vogt, D.E. Cox, A. Arulraj, C.N.R. Rao, P. Karen, A.K. Cheetham, Chem. Mater. 10, 3652 (1998)

    Article  CAS  Google Scholar 

  19. H.E. Sekrafi, A. Ben Jazia Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, J. Mater. Sci. 30, 876 (2019)

    CAS  Google Scholar 

  20. X. Li, H. Zhao, X. Zhoo, N. Xu, Z. Xie, N. Chen, Hydrogen Energy 35, 7913 (2010)

    Article  CAS  Google Scholar 

  21. F. Weiyan, Z. Defend, Z. Guicum, X. Yanjie, M. Jian, Solid State Sci. 13, 110 (2011)

    Article  CAS  Google Scholar 

  22. C. Zhang, H. Zhao, Mater. Res. Bull. 45, 1659 (2010)

    Article  CAS  Google Scholar 

  23. B. Arun, V.R. Akshay, D. Chandrasekhar Kakarla, M. Vasundhara, J. Magn. Magn. Mater. 489, 165418 (2019)

    Article  CAS  Google Scholar 

  24. B. Arun, M. Athira, V.R. Akshay, B. Sudakshina, G.R. Mutta, M. Vasundhara, J. Magn. Magn. Mater. 448, 322–331 (2018)

    Article  CAS  Google Scholar 

  25. J. Liu, L. Zhang, H. Wu, Adv. Funct. Mater. 22, 00544 (2022)

    Google Scholar 

  26. J. Liu, L. Zhang, H. Wu, D. Zang, Chem. Eng. J. 411, 128601 (2021)

    Article  CAS  Google Scholar 

  27. J. Liu, L. Zhang, H. Wu, Adv. Funct. Mater. 21, 10496 (2021)

    Google Scholar 

  28. J. Liu, L. Zhang, D. Zang, H. Wu, Adv. Funct. Mater. 31, 2105018 (2021)

    Article  CAS  Google Scholar 

  29. I. Walha, W. Boujelben, M. Koubaa, A. Cheukhrouhou, A.M. Haghiri-Gosnet, Physica Status Solidi (a) 201, 1416 (2017)

    Article  Google Scholar 

  30. S. Chaffai, W. Boujelben, M. Ellouze, A. Cheikh-Rouhou, J.C. Joubert, Physica B 321, 74 (2002)

    Article  CAS  Google Scholar 

  31. W. Boujelben, A. Cheikh-Rouhou, J. Pierre, J.C. Joubert, Physica B 321, 37 (2002)

    Article  CAS  Google Scholar 

  32. M. Noumi, Y. Marouani, R. Dhahri, E. Dhahri, E.K. Hlil, B.F.O. Costa, J. Alloys. Compd. 866, 9 (2020)

    Google Scholar 

  33. A. Ben Jazia Kharrat, N. Moutia, K. Khirouni, W. Boujelben, Mater. Res. Bull. 105, 75–83 (2018)

    Article  CAS  Google Scholar 

  34. S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, H. Szymczak, J. Exp. Theor. Phys. 122, 356 (2002)

    Google Scholar 

  35. N.F. Mott, E.A. Davis, Electronic Processes in Non Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  36. K. Lee, S. Cho, S. HeumPark, A.J. Heeger, C.-W. Lee, S.-H. Lee, Nature 441, 65 (2006)

    Article  CAS  Google Scholar 

  37. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983)

    Google Scholar 

  38. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  39. B.K. Chaudhuri, K. Chaudhuri, K.K. Som, J. Phys. Chem. Solid. 50, 1149 (1989)

    Article  CAS  Google Scholar 

  40. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  CAS  Google Scholar 

  41. K.H. Mahmoud, F.M. Abdel-Rahim, K. Atef, Y.B. Saddeek, Curr. Appl. Phys. 11, 55 (2011)

    Article  Google Scholar 

  42. M. Ganguli, M. Harish Bhat, K.J. Rao, Phys. Chem. Glas. 40, 297–304 (1999)

    CAS  Google Scholar 

  43. W. Ncib, A. Ben Jazia Kharrat, M. Saadi, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, J. Mater. Sci. 30, 18391–18404 (2019)

    CAS  Google Scholar 

  44. K.S. Cole, R.H. Cole, Chem. Phys. 9, 341 (1941)

    CAS  Google Scholar 

  45. A. Kahouli, A. Sylvestre, F. Jomni, B. Yangui, J. Legrand, J. Phys. Chem. A 116, 1051 (2012)

    Article  CAS  Google Scholar 

  46. M. Dussouze, Second harmonic generation in glasses borophosphate sodium and niobium thermal polarization. University Bordeaux I (France), thesis (2005).

  47. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341–351 (1941)

    Article  CAS  Google Scholar 

  48. A.C. Metaxas, R.J. Meredith, Industrial Microwave Heating (Peter Peregrinus Ltd, London, 1983)

    Google Scholar 

  49. A.K. Jonscher, J. Phys. D 32, R57 (1999)

    Article  CAS  Google Scholar 

  50. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  51. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Clarendon Press, Oxford, 1892)

    Google Scholar 

  52. K.W. Wagner, Erklärung die dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher vorstellungenArchiv für Elektrotechnik 2, 371–387 (1914)

    Google Scholar 

  53. R.W. Sillars, The properties of a dielectric containing semi-conducting particles of various shapes. J. Inst. Electr. Eng. 80, 378 (1937)

    Google Scholar 

  54. Q.F. Huang, S.F. Yoon, Rusli, Q. Zhang, J. Ahn, Thin Solid Films 409, 211 (2002)

    Article  CAS  Google Scholar 

  55. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  56. D. Kumar, S. Arun, S. Selvasekarapandian, H. Nithya, A. Sakunthala, M. Hema, Dielectric, modulus and impedance analysis of LaF3 nanoparticles. Physica B 405, 3803 (2010)

    Article  CAS  Google Scholar 

  57. M. Kumar, N. Srivastava, Investigation of electrical and dielectric properties of NaI doped synthesized systems. J. Non-Cryst. Solids 389, 28 (2014)

    Article  CAS  Google Scholar 

  58. H. Nithya, S. Selvasekarapandian, D.A. Kumar, A. Sakunthala, M. Hema, P. Christopherselvin, J. Kawamura, R.B. Sanjeeviraja, Mater. Chem. Phys. C 126, 404 (2011)

    Article  CAS  Google Scholar 

  59. N.V. Prasad, G. Prasad, T. Bhimasankaran, S.V. Suryanarayana, G.S. Kumar, Indian J. Pure Appl. Phys. 34, 639 (1996)

    Google Scholar 

  60. Y.M. Cui, L.W. Zhang, G.L. Xie, R.M. Wang, Magnetic and transport and dielectric properties of polycristalline TbMnO3. Solid State Commun. 138, 481 (2006)

    Article  CAS  Google Scholar 

  61. M. Barsoum, Fundamentals of Ceramics (Mc Graw-Hill, New York, 1977), p. 543

    Google Scholar 

  62. J. M. Stevels, Handbuch der Physik, Ed. S. Flügge, vol. XX, Springer, Berlin (1957) 350.

  63. M.A. Afifi, A. AbdAl-Wahabb, A.E. Bekheet, H.E. Atyia, Acta Phys. Pol., A 98, 401 (2000)

    Article  CAS  Google Scholar 

  64. H.M. El-Mallah, Acta Phys. Pol. A 122, 174 (2012)

    Article  CAS  Google Scholar 

  65. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, J. Non-Cryst. Solids 45, 57 (1981)

    Article  CAS  Google Scholar 

  66. D.M. Taylor, H.L. Gomez, J. Phys. D 28, 2554 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

ABJK conceived this idea, analyzed the data, and wrote the manuscript. KK designed the electrical measurements. WB directed the project. All the authors discussed the results and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to A. Ben Jazia Kharrat.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharrat, A.B.J., Khirouni, K. & Boujelben, W. Improving the physical properties of polycrystalline-deficient Pr0.8Sr0.2−xxMnO3 (0 ≤ x ≤ 0.2) compounds for electronic devices. J Mater Sci: Mater Electron 33, 18632–18657 (2022). https://doi.org/10.1007/s10854-022-08714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08714-8

Navigation