Skip to main content
Log in

Structural, magnetic properties and magnetocaloric effect in antipervoskite compound Zn0.6NFe3.4

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We systematically investigate the crystal structure, magnetic properties and magnetocaloric effect (MCE) of antipervoskite compound Zn0.6NFe3.4. There is a ferromagnetic to paramagnetic second-order phase transition to the Curie temperature (TC ~ 140 K), and the saturation magnetization (MS ~ 116.97 emu/g) is expressed at 5 K. The non-hysteresis behavior of the sample’s M(H) curves are of great significance of the research and application of its magnetic refrigeration. Therefore, the study of its MCE has obtained the maximum magnetic entropy change (\(- \Delta {S}_{M}^\text{max}\) ~ 2.21 J/kg K) and the relatively high relative cooling power ( ~ 207.69 J/kg for ΔH = 50 kOe) around TC. Moreover, due to the advantages of easy preparation, low cost and non-toxic, Zn0.6NFe3.4 can become a magnetic refrigeration material with great application potential. Our research also provides a reference from the study of the MCE of other antiperovskite structure compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Smith, C.R.H. Bahl, R. Bjørk, K. Engelbrecht, K.K. Nielsen, N. Pryds, Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2, 1288–1318 (2012)

    Article  CAS  Google Scholar 

  2. A. Dianoux, B. Malaman, T. Mazet, Magnetic and magnetocaloric properties of Fe5 – xMnxSn3. Solid State Commun. 260, 40–44 (2017)

    Article  CAS  Google Scholar 

  3. Y. Taguchi, H. Sakai, D. Choudhury, Magnetocaloric materials with multiple instabilities. Adv. Mater. 29, 1606144 (2017)

    Article  CAS  Google Scholar 

  4. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005)

    Article  CAS  Google Scholar 

  5. D.J. Silva, B.D. Bordalo, A.M. Pereira, J. Ventura, J.P. Araújo, Solid state magnetic refrigerator. Appl. Energy 93, 570–574 (2012)

    Article  CAS  Google Scholar 

  6. V.K. Pecharsky, K.A. Gschneidner Jr., Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494 (1997)

    Article  CAS  Google Scholar 

  7. I.G. de Oliveira, P.J. von Ranke, M. El Massalami, C.M. Chaves, Giant magnetocaloric effect in tetragonal HoNi2B2C. Phys. Rev. B 72, 174420–174426 (2005)

    Article  CAS  Google Scholar 

  8. G. Alouhmy, R. Moubah, E.H. Sayouty, H. Lassri, Comparative studies of magnetic and magnetocaloric properties in amorphous Gd0.67Y0.33 and Gd0.67Zr0.33 films. Solid State Commun. 250, 14 (2017)

    Article  CAS  Google Scholar 

  9. V.K. Pecharsky, K.A. Gschneidner Jr., Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999)

    Article  CAS  Google Scholar 

  10. N.A. de Oliveira, P.J. von Ranke, Theoretical aspects of the magnetocaloric effect. Phys. Rep. 489, 89–159 (2010)

    Article  CAS  Google Scholar 

  11. A.A. Amirov, D.M. Yusupov, E.K. Murliev, C.A. Gritsenko, A.M. Aliev, A.M. Tishin, Smart thermoresponsive composite activated by magnetocaloric effect. Mater. Lett. 304, 130626 (2021)

    Article  CAS  Google Scholar 

  12. B.S. Wang, J.C. Lin, P. Tong, L. Zhang, W.J. Lu, X.B. Zhu, Z.R. Yang, W.H. Song, J.M. Dai, Y.P. Sun, Structural, magnetic, electrical transport properties, and reversible room-temperature magnetocaloric effect in antipervoskite compound AlCMn3. J. Appl. Phys. 108, 093925 (2010)

    Article  CAS  Google Scholar 

  13. X.C. Kan, L. Zu, B.S. Wang, S. Lin, X.F. Wang, P. Tong, W.H. Song, Y.P. Sun, Magnetic and structural phase diagram of antiperovskites ZnCFe3 – xCox (0 ≤ x ≤ 3): the combined negative magnetoresistance and large room-temperature magnetocaloric effect in x = 0.5. J. Alloys Compd. 693, 895–901 (2017)

    Article  CAS  Google Scholar 

  14. B.S. Wang, P. Tong, Y.P. Sun, W. Tang, L.J. Li, X.B. Zhu, Z.R. Yang, W.H. Song, Structural, magnetic properties and magnetocaloric effect in Ni-doped antiperovskite compounds GaCMn3 – xNix (0 ≤ x ≤ 0.10). Phys. B 405, 2427–2430 (2010)

    Article  CAS  Google Scholar 

  15. W. Wang, X.C. Kan, X.S. Liu, Z.H.B. Cheng, C.C. Liu, M. Shezad, Y.J. Yang, Q.R. Lv, K.M. Ur Rehman, Effect of zinc substitution on crystal structure and magnetocaloric properties of ZnFe3N nitride. Eur. Phys. J. Plus 135, 505 (2020)

    Article  CAS  Google Scholar 

  16. T. Tohei, H. Wada, T. Kanomata, Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC. J. Appl. Phys. 94, 1800 (2003)

    Article  CAS  Google Scholar 

  17. T. Scholz, R. Dronskowski, Improved ammonolytic synthesis, structure determination, electronic structure, and magnetic properties of the solid solution SnxFe4–xN (0 ≤ x ≤ 0.9). Inorg. Chem. 54, 8800 (2015)

    Article  CAS  Google Scholar 

  18. B.S. Wang, P. Tong, Y.P. Sun, X. Luo, X.B. Zhu, G. Li, X.D. Zhu, S.B. Zhang, Z.R. Yang, W.H. Song, J.M. Dai, Large magnetic entropy change near room-temperature in antiperovskite SnCMn3. Europhys. Lett. 85, 47004 (2009)

    Article  CAS  Google Scholar 

  19. V. Provenzano, A.J. Shapiro, R.D. Shull, Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 429, 853 (2004)

    Article  CAS  Google Scholar 

  20. K.A. Gschneidner Jr., V.K. Pecharsky, Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387 (2000)

    Article  CAS  Google Scholar 

  21. S. Lin, B.S. Wang, X.B. Hu, J.C. Lin, Y.N. Huang, H.B. Jian, W.J. Lu, B.C. Zhao, P. Tong, W.H. Song, Y.P. Sun, The structural, magnetic, electrical/thermal transport properties and reversible magnetocaloric effect in Fe-based antipervoskite compound AlC1.1Fe3. J. Magn. Magn. Mater. 324, 3267–3271 (2012)

    Article  CAS  Google Scholar 

  22. Scholz T, Leineweber A, Dronskowski R (2016) Comment on “High-temperature soft magnetic properties of antiperovskite nitrides ZnNFe3 and AlNFe3”, by Yankun Fu, Shuai Lin, and Bosen Wang, J. Magn. Magn. Mater. 378 (2015) 54–58. J Magn Magn Mater 416:475–476

    Article  CAS  Google Scholar 

  23. S. Amraoui, A. Feraoun, M. Kerouad, Theoretical study of the magnetic and magnetocaloric properties of the ZnFe3N antiperovskite. Curr. Appl. Phys. 31, 68–73 (2021)

    Article  Google Scholar 

  24. W. Wang, X.C. Kan, X.S. Liu, Z.T. Zhang, K.M. Ur Rehman, C.C. Liu, M. Shezad, Ferromagnetic frustration in ternary nitride ZnFe3N. Phys. Chem. Chem. Phys. 22, 27770 (2020)

    Article  CAS  Google Scholar 

  25. L. Zhang, B.S. Wang, Y.P. Sun, P. Tong, J.Y. Fan, C.J. Zhang, L. Pi, Y.H. Zhang, Critical behavior in the antiperovskite ferromagnet AlCMn3. Phys. Rev. B 85, 104419 (2012)

    Article  CAS  Google Scholar 

  26. N. Khan, A. Midya, K. Mydeen, P. Mandal, A. Loidl, D. Prabhakaran, Critical behavior in single-crystalline La0.67Sr0.33CoO3. Phys. Rev. B 82, 064422 (2010)

    Article  CAS  Google Scholar 

  27. Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, D. Xie, T.L. Ren, Dielectric, magnetic, and magnetoelectric properties of La and Ti codoped BiFeO3. Appl. Phys. Lett. 97, 222904 (2010)

    Article  CAS  Google Scholar 

  28. N. Khan, P. Mandal, K. Mydeen, D. Prabhakaran, Magnetoelectronic phase separation in La1 – xSrxCoO3 single crystals: evidence from critical behavior. Phys. Rev. B 85, 214419 (2012)

    Article  CAS  Google Scholar 

  29. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964)

    Article  Google Scholar 

  30. M.H. Phan, Y. Seong-Cho, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)

    Article  CAS  Google Scholar 

  31. V. Franco, J.S. Blázquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512 (2006)

    Article  CAS  Google Scholar 

  32. S. Lin, B.S. Wang, J.C. Lin, L. Zhang, X.B. Hu, Y.N. Huang, W.J. Lu, B.C. Zhao, P. Tong, W.H. Song, Y.P. Sun, Composition dependent-magnetocaloric effect and low room-temperature coefficient ofresistivity study of iron-based antiperovskite compounds Sn1 – xGaxCFe3 (0 ≤ x ≤ 1.0). Appl. Phys. Lett. 99, 172503 (2011)

    Article  CAS  Google Scholar 

  33. C.L. Zhang, D.H. Wang, Z.D. Han, H.C. Xuan, B.X. Gu, Y.W. Du, Large magnetic entropy changes in Gd–Co amorphous ribbons. J. Appl. Phys. 105, 13912 (2009)

    Article  CAS  Google Scholar 

  34. R. Zeng, L. Lu, W.X. Li, J.H. Kim, D.Q. Shi, H.K. Liu, S.X. Dou, J.L. Wang, S.J. Campbell, Z. Wang, Y. Li, M.Y. Zhu, C.Q. Feng, Magnetic properties and magnetocaloric effect of (Mn1 – xNix)3Sn2 (x = 0-0.5) compounds. J. Appl. Phys. 105, 07A935 (2009)

    Article  CAS  Google Scholar 

  35. M.A. Hamad, Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Transit. 85, 106–112 (2012)

    Article  CAS  Google Scholar 

  36. J.K. Zhao, X.S. Liu, X.C. Kan, C.C. Liu, W. Wang, J.Y. Hu, Q.R. Lv, J.W. Huang, M. Shazeda, Investigating the structural, magnetic, magnetocaloric and critical behavior of Mg0.35Zn0.65Fe2O4 ferrite. Ceram. Int. 47, 7906–7917 (2021)

    Article  CAS  Google Scholar 

  37. W. Choe, V.K. Pecharsky, A.O. Pecharsky, K.A. Gschneidner Jr., V.G. Young Jr., G.J. Miller, Making and breaking covalent bonds across the magnetic transition in the giant magnetocaloric material Gd5(Si2Ge2). Phys. Rev. Lett. 84, 4617 (2000)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51872004), by Education Department of Anhui Province (Grant No. KJ2019ZD03) and by the Key Research and Development Plan of Anhui Province (Grant Nos. 201904a05020038, 202003a05020051).

Author information

Authors and Affiliations

Authors

Contributions

LQ: Prepared the sample and wrote the manuscript, XK and XL: developed the experimental formula and provided the measurements, SF and QL: helped to discuss the article framework, YL and CZ: provided research ideas and guided experiments. All authors contributed to the discussions and preparation of the manuscript.

Corresponding authors

Correspondence to Xucai Kan or Xiansong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Kan, X., Liu, X. et al. Structural, magnetic properties and magnetocaloric effect in antipervoskite compound Zn0.6NFe3.4. J Mater Sci: Mater Electron 33, 18556–18564 (2022). https://doi.org/10.1007/s10854-022-08707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08707-7

Navigation