Skip to main content

Advertisement

Log in

Low-content core–shell-structured TiO2 nanobelts@SiO2 doped with poly(vinylidene fluoride) composites to achieve high-energy storage density

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polymer film capacitors have a high power density and great application potential in high-power electronic devices; however, high-energy storage density of polymer composites is usually obtained via doping high-content ceramic filler. An efficient approach to solve this issue is to dope polymers with an ultralow-content ceramic filler to improve their energy storage density. In this work, one-dimensional (1D) TiO2 nanobelts@SiO2 (TO nb@SO) are prepared via the hydrothermal reaction, muffle calcination, and hydrolysis. Extremely low-content TO nb@SO/poly(vinylidene fluoride) (TO nb@SO/PVDF) composites are prepared. The microstructure, crystalline structure, dielectric properties, electric breakdown strength, and discharge energy density are systematically investigated. The results show that the nanobelts have a width of 250 nm, a length of 1–2 μm, and a uniform shell layer at the edge with a thickness of ∼25 nm. The relative dielectric constant of the composites is significantly enhanced; it reaches 11 for PVDF at 100 Hz, and 12.03 for 0.5 wt% TO nb@SO/PVDF. The theoretical dielectric constant is calculated based on a mathematical model and compared with the measured value. 1D materials with a large aspect ratio are beneficial in the improvement of the dielectric properties. The Weibull breakdown field strength is 381.3 MV/m for 0.5 wt% TO nb@SO/PVDF. A discharge energy density of 8.86 J/cm3 is obtained at 390 MV/m, while a high charge/discharge efficiency of 66.28% is achieved. To conclude, this work provides a valuable method for increasing the energy storage density and charge/discharge efficiency of dielectric capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334 (2013)

    Article  CAS  Google Scholar 

  2. D.Q. Tan, J. Appl. Polym. Sci. 137, 49379 (2020)

    Article  CAS  Google Scholar 

  3. Q. Li, G.Z. Zhang, F.H. Liu, K. Han, M.R. Gadinski, C.X. Xiong, Q. Wang, Energ. Environ. Sci. 8, 922 (2015)

    Article  CAS  Google Scholar 

  4. T.V.K. Prateek, R.K. Gupta, Chem. Rev. 116, 4260 (2016)

    Article  CAS  Google Scholar 

  5. B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334 (2006)

    Article  CAS  Google Scholar 

  6. Y. Wang, X. Zhou, Q. Chen, B. Chu, Q. Zhang, IEEE Trans. Dielectr. Electr. Insul. 17, 1036 (2010)

    Article  CAS  Google Scholar 

  7. Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, U. Li, E. Iagodkine, A. Haque, L.Q. Chen, N. Jackson, Q. Wang, Nature 523, 576 (2015)

    Article  CAS  Google Scholar 

  8. Q.G. Chi, T. Ma, Y. Zhang, Y. Cui, C.H. Zhang, J.Q. Lin, X. Wang, Q.Q. Lei, J. Mater. Chem. A 5, 16757 (2017)

    Article  CAS  Google Scholar 

  9. Y. Cui, T.D. Zhang, Y. Feng, C.H. Zhang, Q.G. Chi, Y.Q. Zhang, Q.G. Chen, X. Wang, Q.Q. Lei, Compos. Part. B-Eng 177, 107429 (2019)

    Article  CAS  Google Scholar 

  10. X.Y. Xiong, Q.Y. Zhang, Z. Zhang, H. Yang, J.X. Tong, J.Y. Wen, Compos. Part. A-Appl S 145, 106375 (2021)

    Article  CAS  Google Scholar 

  11. Q.Z. Sun, J.P. Wang, H.N. Sun, L.Q. He, L.X. Zhang, P. Mao, X.X. Zhang, F. Kang, Z.P. Wang, R.R. Kang, L. Zhang, Compos. Part. A-Appl S 149, 106546 (2021)

    Article  CAS  Google Scholar 

  12. W. Xia, Z. Zhang, IET Nanodielectrics 1, 17 (2018)

    Article  Google Scholar 

  13. Y. Zhang, Q.G. Chi, L.Z. Liu, C.H. Zhang, C. Chen, X. Wang, Q.Q. Lei, APL Mater. 5, 334 (2017)

    Google Scholar 

  14. Y. Zhang, Q.G. Chi, L.Z. Liu, T.D. Zhang, C.H. Zhang, Q.G. Chen, X. Wang, Q.Q. Lei, ACS Appl. Energy Mater. 1, 6320 (2018)

    Article  CAS  Google Scholar 

  15. T.J. Lewis, IEEE Trans. Dielectr. Electr. Insul. 1, 812 (1994)

    Article  CAS  Google Scholar 

  16. Y.N. Hao, X.H. Wang, K. Bi, J.M. Zhang, Y.H. Zhang, L.W. Wu, P.Y. Zhao, X. Kun, M. Lei, L.T. Li, Nano Energy 31, 49 (2017)

    Article  CAS  Google Scholar 

  17. X. Xiong, D. Shen, Q. Zhang, H. Yang, J. Wen, Z. Zhou, Compos. Commun. 25, 100682 (2021)

    Article  Google Scholar 

  18. D. Zhang, X.F. Zhou, J. Roscow, K.C. Zhou, L. Wang, H. Luo, R.B. Chris, Sci. Rep. 7, 45179 (2017)

    Article  CAS  Google Scholar 

  19. X. Xiong, Q. Zhang, Z. Zhang, H. Yang, J. Tong, J. Wen, Compos. Part. A-Appl S 145, 106375 (2021)

    Article  CAS  Google Scholar 

  20. Y. Wang, Y.F. Hou, Y. Deng, Compos. Sci. Technol. 145, 71 (2017)

    Article  CAS  Google Scholar 

  21. M. Guo, J. Jiang, Z. Shen, Y. Lin, C.W. Nan, Y. Shen, Mater. Today 29, 49 (2019)

    Article  CAS  Google Scholar 

  22. L. Zhu. J. Phys. Chem. Lett. 5, 3677 (2014)

    Article  CAS  Google Scholar 

  23. J. Hu, Y. Liu, S. Zhang, B. Tang, Chem. Eng. J. 428, 131046 (2022)

    Article  CAS  Google Scholar 

  24. J. Xu, C. Fu, H. Chu, X. Wu, Z. Tan, J. Qian, W. Li, Z. Song, X. Ran, W. Nie, Sci. Rep. 10, 1 (2020)

    Article  CAS  Google Scholar 

  25. Z.B. Pan, L.M. Yao, J.W. Zhai, D.Z. Fu, B. Shen, H.T. Wang, ACS Appl. Mater. Interfaces 9, 4024 (2017)

    Article  CAS  Google Scholar 

  26. B.R. Prateek, S. Siddiqui, A. Garg, R.K. Gupta, ACS Appl. Mater. Interfaces 11, 14329 (2019)

    Article  CAS  Google Scholar 

  27. W.J. Li, Q.J. Meng, Y.S. Zheng, Z.C. Zhang, W.M. Xia, Z. Xu, Appl. Phys. Lett. 96, 192905 (2010)

    Article  CAS  Google Scholar 

  28. Y. Shen, D.S. Shen, X. Zhang, J.Y. Jiang, Z.K. Dan, Y. Song, Y.H. Lin, M. Li, C.W. Nan, J. Mater. Chem. A 4, 8359 (2016)

    Article  CAS  Google Scholar 

  29. J. Fu, Y. Hou, M. Zheng, Q. Wei, M. Zhu, H. Yan, ACS Appl. Mater. Interfaces 7, 24480 (2015)

    Article  CAS  Google Scholar 

  30. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog Mater. Sci. 57, 660 (2012)

    Article  CAS  Google Scholar 

  31. S. Luo, Y. Shen, S. Yu, Y. Wan, W.H. Liao, R. Sun, C.P. Wong, Energ. Environ. Sci. 10, 137 (2017)

    Article  CAS  Google Scholar 

  32. T. Hanai, Kolloid-Zeitschrift 171, 23 (1960)

    Article  CAS  Google Scholar 

  33. Z. Pan, L. Yao, J. Zhai, H. Wang, B. Shen, ACS Appl. Mater. Interfaces 9, 14337 (2017)

    Article  CAS  Google Scholar 

  34. S. Liu, J. Zhai, J. Mater. Chem. A 3, 1511 (2014)

    Article  CAS  Google Scholar 

  35. Y.C. Xie, Y.Y. Yu, Y.F. Feng, W.R. Jiang, Z.C. Zhang, ACS Appl. Mater. Interfaces 9, 2995 (2017)

    Article  CAS  Google Scholar 

  36. Q.G. Chi, X.B. Wang, C.H. Zhang, Q.G. Chen, M.H. Chen, T.D. Zhang, L. Gao, Y. Zhang, Y. Cui, X. Wang, Q.Q. Lei, ACS Sustain. Chem. Eng. 6, 8641 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the support of the Heilongjiang Provincial Natural Science Foundation of China (Grant No. JJ2020LH2012), and the University Nursing Program for the Young Scholars with Creative Talents in Heilongjiang Province (Grant No. UNPYSCT-2018124).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Liang Gao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Zhang, J., Song, L. et al. Low-content core–shell-structured TiO2 nanobelts@SiO2 doped with poly(vinylidene fluoride) composites to achieve high-energy storage density. J Mater Sci: Mater Electron 33, 18345–18355 (2022). https://doi.org/10.1007/s10854-022-08688-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08688-7

Navigation