Skip to main content
Log in

The effect of magnetic field orientation on the magnetoimpedance of electroplated NiFeCo/Cu wire

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Giant magnetoimpedance (GMI) effect in electrodeposited NiFeCo/Cu wire is studied in the intermediate frequency region (10 kHz–10 MHz) for various orientations of applied magnetic field \((\theta )\) with respect to the axis of plated wire. The experimental results show that the direction of the applied magnetic field has a significant impact on the GMI response of soft magnetic wires. The GMI ratio decreases as \(\theta\) increases from \(0^\circ\) to \(80^\circ\). At higher excitation frequencies, the magnetoimpedance vs. field curve exhibits a double peak at field \(H_m\) whose value increases with \(\theta\). These experimental results are rigorously explained by the proposed model of circumferential permeability, based on the domain wall motion and magnetization rotation. Magnetic anisotropy dispersion, an important parameter that impacts the sensitivity of sensors based on GMI effect at high frequencies, is adequately considered. The circumferential permeability is reconstructed by fitting the experimental data of impedance on the proposed model of permeability. The shifting of peak field \(H_m\) towards higher side as well as broadening of double peak with increasing inclination angle of external magnetic field with respect to wire axis is quite interesting. This feature can be utilized in development of directional magnetic sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data acquired by the authors in this work can be made available on reasonable request to the corresponding author.

References

  1. L.V. Panina, K. Mohri, Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189–1191 (1994). https://doi.org/10.1063/1.112104

    Article  CAS  Google Scholar 

  2. L.V. Panina, K. Mohri, K. Bushida, M. Noda, Giant magneto-impedance and magneto-inductive effects in amorphous alloys. J. Appl. Phys. 76, 6198–6203 (1994). https://doi.org/10.1063/1.358310

    Article  CAS  Google Scholar 

  3. A. Zhukov, M. Ipatov, P. Corte-Leon, L.G. Legarreta, M. Churyukanova, J.M. Blanco, J. Gonzalez, S. Taskaev, B. Hernando, V. Zhukova, Giant magnetoimpedance in rapidly quenched materials. J. Alloys Compd. 814, 152225 (2020). https://doi.org/10.1016/j.jallcom.2019.152225

    Article  CAS  Google Scholar 

  4. S. Kalhor, M. Ghanaatshoar, S. Aliaskarisohi, Magnetoimpedance and magnetooptical properties of electrodeposited NiFeMo ribbons. Appl. Phys. A 124, 229 (2018). https://doi.org/10.1007/s00339-018-1636-z

    Article  CAS  Google Scholar 

  5. C. Yang, Y.B. Guo, B.Y. Long, C.L. Jia, X. Li, W.H. Xie, Z.J. Zhao, Enhanced giant magnetoimpedance effect in FINEMET/TiO2 composite ribbons. J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-021-07480-3

    Article  Google Scholar 

  6. N.A. Buznikov, G.V. Kurlyandskaya, Magnetoimpedance in symmetric and non-symmetric nanostructured multilayers: a theoretical study. Sensors 19, 1761 (2019). https://doi.org/10.3390/s19081761

    Article  CAS  Google Scholar 

  7. B.A. Wicaksono, N. Nuryani, B. Purnama, Magneto-impedance effects in electrodeposited multi-layer [NiFe/Cu]3 on Cu wire substrates for kHz-order frequency measurements. J. Magn. Appl. 1, 9–12 (2021). https://doi.org/10.53533/JMA.v1i1.5

    Article  Google Scholar 

  8. A. Zhukov, A. Talaat, M. Churyukanova, S. Kaloshkin, V. Semenkova, M. Ipatov, J.M. Blanco, V. Zhukova, Engineering of magnetic properties and GMI effect in co-rich amorphous microwires. J. Alloys Compd. 664, 235–241 (2016). https://doi.org/10.1016/j.jallcom.2015.12.224

    Article  CAS  Google Scholar 

  9. A. Le, C. Kim, M. Phan, H. Lee, S. Yu, Very large magnetoimpedance effect in a glass-coated microwire LC-resonator. Physica B 395, 88–92 (2007). https://doi.org/10.1016/j.physb.2007.02.061

    Article  CAS  Google Scholar 

  10. R.E. Kammouni, A.A. Chlenova, S.O. Volchkov, G.V. Kurlyandskaya, Magnetic properties and magnetoimpedance of FeCoNi/cube electroplated tubes with different features of field-annealing induced magnetic anisotropy. J. Magn. Magn. Mater. 423, 183–190 (2017). https://doi.org/10.1016/j.jmmm.2016.09.091

    Article  CAS  Google Scholar 

  11. S. Vasam, S. Veeturi, Magnetoimpedance in electrodeposited NiFe/Cu composite wires: a study on role of in-situ stress. Solid State Commun. 343, 114643 (2022). https://doi.org/10.1016/j.ssc.2021.114643

    Article  CAS  Google Scholar 

  12. D. Menard, M. Britel, P. Ciureanu, A. Yelon, Giant magnetoimpedance in a cylindrical magnetic conductor. J. Appl. Phys. 84, 2805–2814 (1998). https://doi.org/10.1063/1.368421

    Article  CAS  Google Scholar 

  13. C. Tannous, J. Gieraltowski, Giant magneto-impedance and its applications. J. Mater. Sci.: Mater. Electron. 15, 125–133 (2004). https://doi.org/10.1023/B:JMSE.0000011350.93694.91

    Article  CAS  Google Scholar 

  14. A.C. Mishra, Effect of composition on magnetic softness and magnetoimpedance of electrodeposited NiFe/Cu. Indian J. Phys. 88, 367–373 (2014). https://doi.org/10.1007/s12648-013-0423-0

    Article  CAS  Google Scholar 

  15. G.V. Kurlyandskaya, R.E. Kammouni, S.O. Volchkov, S.V. Shcherbinin, A. Larrañaga, Magnetoimpedance sensitive elements based on CuBe/FeCoNi electroplated wires in single and double wire configurations. IEEE Trans. Magn. 53, 2000415 (2017). https://doi.org/10.1109/TMAG.2016.2619739

    Article  Google Scholar 

  16. S. Vasam, V. Srinivas, Influence of core-wire on giant magnetoimpedance effect in electrodeposited composite wires. J. Electrochem. Soc. 167, 132503 (2020)

    Article  CAS  Google Scholar 

  17. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd edn. (Pergamon Press, New York, 1984)

    Google Scholar 

  18. M. Knobel, M. Vazquez, L. Kraus, Giant magnetoimpedance, in Handbook of Magnetic Materials, vol. 15, ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2003), pp. 497–563. https://doi.org/10.1016/S1567-2719(03)15005-6

    Chapter  Google Scholar 

  19. M.H. Phan, H.X. Peng, Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323–420 (2008). https://doi.org/10.1016/j.pmatsci.2007.05.003

    Article  Google Scholar 

  20. A. Asfour, J.P. Yonnet, M. Zidi, A high dynamic range GMI current sensor. J. Sens. Technol. 2, 7 (2012). https://doi.org/10.4236/jst.2012.24023

    Article  CAS  Google Scholar 

  21. J.J.B. Lopez, J.I.P. Landazábal, C.G. Polo, Enhanced magnetic nanoparticle detection sensitivity in non-linear magnetoimpedance-based sensor. IEEE Sens. J. 18(21), 8701–8708 (2018). https://doi.org/10.1109/JSEN.2018.2868860

    Article  Google Scholar 

  22. M. Pektas, V.S. Kola, N. Bayri, T. Izgi, S. Atalay, Magnetic field sensor using the asymmetric giant magnetoimpedance effect created by micromagnets. J. Mater. Sci.: Mater. Electron. 32, 13062–13067 (2021). https://doi.org/10.21203/rs.3.rs-181044/v1

    Article  CAS  Google Scholar 

  23. C. Han, M. Xu, J. Tang, Y. Liu, Z. Zhou, Giant magneto-impedance sensor with working point self adaptation for unshielded human bio-magnetic detection. Virtual Real. Intell. Hardw. 4, 38–54 (2022). https://doi.org/10.1016/j.vrih.2022.01.003

    Article  Google Scholar 

  24. P. Ripka, Magnetic Sensors and Magnetometres (Artech House Publishers, Norwood, 2001)

    Google Scholar 

  25. T. Musha, H. Inujima, The basic examination of the magnetic rotation angle sensor with the magnetic substance slit. IEEJ Trans. Fundam. Mater. 6, 306–311 (2021). https://doi.org/10.1541/ieejfms.140.306

    Article  Google Scholar 

  26. N. Hadjigeorgiou, K. Asimakopoulos, K. Papafotis, P.P. Sotiriadis, Vector magnetic field sensors: operating principles, calibration, and applications. IEEE Sens. J. 21, 12531–12544 (2021). https://doi.org/10.1109/JSEN.2020.3045660

    Article  CAS  Google Scholar 

  27. Y. Honkura, Development of amorphous wire type MI sensors for automobile use. J. Magn. Magn. Mater. 249, 375–381 (2002)

    Article  CAS  Google Scholar 

  28. K.R. Pirota, L. Kraus, M. Knobel, P.G. Pagliuso, C. Rettori, Angular dependence of giant magnetoimpedance in an amorphous Co–Fe–Si–B ribbon. Phys. Rev. B 60, 6685 (1999). https://doi.org/10.1103/PhysRevB.60.6685

    Article  CAS  Google Scholar 

  29. G. Kurlyandskaya, P. Jantaratana, M.A. Cerdeira, V. Vakovskiy, Giant magnetoimpedance of CuBe/FeCoNi electroplated wires: focus on angular sensoric. World J. Condens. Matter Phys. 3, 21–27 (2013). https://doi.org/10.4236/wjcmp.2013.31004

    Article  CAS  Google Scholar 

  30. R. Mardani, A. Amirabadizadeh, M. Ghanaatshoar, H. Farsi, The influence of magnetic field direction and amplitude in direct current-field annealing on the magnetoimpedance of Co-based wires. J. Supercond. Nov. Magn. 28, 2441 (2015). https://doi.org/10.1007/s10948-015-3051-4

    Article  CAS  Google Scholar 

  31. J.J. Beato-Lopez, C.A. de la Cruz Blas, A. Mitra, C. Gomez Polo, Electrical model of giant magnetoimpedance sensors based on continued fractions. Sens. Actuators A 242, 73–78 (2016). https://doi.org/10.1016/j.sna.2016.02.042

    Article  CAS  Google Scholar 

  32. G.Y. Melnikov, V.N. Lepalovsky, G.V. Kurlyandskaya, GMI-detection of a magnetic composite imitating a blood vessel clot. Russ. Phys. J. 64, 1880–1885 (2022). https://doi.org/10.1007/s11182-022-02536-1

    Article  Google Scholar 

  33. H. Uppili, B. Daglen, Bi-directional giant magneto impedance sensor. Adv. Mater. Phys. Chem. 3, 249–254 (2013). https://doi.org/10.4236/ampc.2013.35036

    Article  CAS  Google Scholar 

  34. R.D. Tikhonov, Features of the electrochemical deposition of films from a triple system of CoNiFe. Eur. J. Eng. Technol. Res. 6, 19–28 (2021). https://doi.org/10.24018/ejers.2021.6.2.2081

    Article  Google Scholar 

  35. A. Kalaivani, B. Mohanbabu, R. Kannan, G. Senguttuvan, V. Sivakumar, D. Guo, Influence of current density on the physical properties of electroplated NiFeP nano thin films for MEMS applications. J. Mater. Sci.: Mater. Electron. 32, 13610–13618 (2021). https://doi.org/10.1007/s10854-021-05939-x

    Article  CAS  Google Scholar 

  36. A.C. Mishra, T. Sahoo, A.K. Thakur, V. Srinivas, Giant magnetoimpedance in electrodeposited CoNiFe/Cu wire: a study on thickness dependence. J. Alloys Compd. 480, 771–776 (2009). https://doi.org/10.1016/j.jallcom.2009.02.054

    Article  CAS  Google Scholar 

  37. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley, Philippines, 1978)

    Google Scholar 

  38. L. Bavall, Determination of coating thickness of a copper-plated steel wire by measurement of the internal wire impedance. IEEE Trans. Instrum. Meas. 47, 1013–1019 (1998)

    Article  Google Scholar 

  39. E.B. Rosa, The self and mutual inductance of linear conductors. Bull. Bureau Stand. 4, 301 (1908)

    Article  Google Scholar 

  40. P.C. Fannin, Y.P. Kalmykov, S.W. Charles, On the use of frequency-domain measurements to investigate time-domain magnetization decay in a ferrofluid. J. Phys. D 27, 194–197 (1994). https://doi.org/10.1088/0022-3727/27/2/003

    Article  CAS  Google Scholar 

  41. G. Buttino, A. Cecchetti, M. Poppi, Domain wall relaxation frequency and magnetocrystalline anisotropy in Co- and Fe-based nanostructured alloys. J. Magn. Magn. Mater. 269, 70–77 (2004). https://doi.org/10.1016/S0304-8853(03)00563-8

    Article  CAS  Google Scholar 

  42. D.X. Chen, J.L. Munoz, A. Hernando, M. Vazquez, Magnetoimpedance of metallic ferromagnetic wires. Phys. Rev. B 57, 10699–10704 (1998). https://doi.org/10.1103/PhysRevB.57.10699

    Article  CAS  Google Scholar 

  43. L.V. Panina, K. Mohn, S. Member, T. Uchyama, M. Noda, Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans. Magn. 31, 1249–1260 (1995)

    Article  CAS  Google Scholar 

  44. G.V. Kurlyandskaya, J.M. Barandiaran, J.L. Munoz, J. Gutierrez, Frequency dependence of giant magnetoimpedance effect in CuBe/CoFeNi plated wire with different types of magnetic anisotropy. J. Appl. Phys. 87, 4822–4824 (2000). https://doi.org/10.1063/1.373171

    Article  CAS  Google Scholar 

  45. N.A. Usov, A.S. Antonov, A.N. Lagarkov, Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy. J. Magn. Magn. Mater. 185, 159–173 (1998). https://doi.org/10.1016/S0304-8853(97)01148-7

    Article  CAS  Google Scholar 

  46. S.K. Ghatak, Influence of demagnetization effect on giant magneto-impedance of soft ferromagnetic metal. Solid State Commun. 150, 1150–1153 (2010). https://doi.org/10.1016/j.ssc.2010.03.019

    Article  CAS  Google Scholar 

  47. D. Menard, A. Yelon, Theory of longitudinal magnetoimpedance in wires. J. Appl. Phys. 88, 379–393 (2000). https://doi.org/10.1063/1.373671

    Article  CAS  Google Scholar 

  48. J. Ziman, V. Suhajova, M. Kladivova, Effect of domain structure on the impedance of ferromagnetic wire with circumferential anisotropy. Sens. Actuators A 223, 134–140 (2015). https://doi.org/10.1016/j.sna.2015.01.005

    Article  CAS  Google Scholar 

  49. S. Alikhanzadeh-Arani, M. Almasi-Kashi, S. Sargazi, A. Rahdar, R. Arshad, F. Baino, CoNiZn and CoNiFe nanoparticles: synthesis, physical characterization, and in vitro cytotoxicity evaluations. Appl. Sci. 11, 5339 (2021). https://doi.org/10.3390/app11125339

    Article  CAS  Google Scholar 

  50. R. Mardani, A. Amirabadizadeh, M. Ghanaatshoar, Angular dependence of giant magneto impedance and magnetic characteristic of Co-based wire in different magnetic field ranges. Mod. Phys. Lett. B 28, 1450197 (2014). https://doi.org/10.1142/S0217984914501978

    Article  CAS  Google Scholar 

  51. Y. Chen, J. Zou, X. Shu, Y. Song, Z. Zhao, Enhanced giant magneto-impedance effects in sandwich FINEMET/rGO/FeCo composite ribbons. Appl. Surf. Sci. 545, 149021 (2021). https://doi.org/10.1016/j.apsusc.2021.149021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prerit Tandon would like to thank Ministry of Human Resource Development (MHRD), New Delhi, for providing financial assistance for carrying out this work. The authors are thankful to Prof. V. Srinivas, IIT Madras and Dr Awalendra K. Thakur, IIT Patna for their valuable suggestions during the work.

Funding

This work has been accomplished with the financial support from Board of Research in Nuclear Sciences, Bombay (BRNS YSRA PROJECT 59/20/03/2020-BRNS/59002).

Author information

Authors and Affiliations

Authors

Contributions

PT performed all the experimental work, collected, and analyzed the data and wrote the first draft of the manuscript. ACM formulated the idea, supervised the work, and approved the final version of the manuscript.

Corresponding author

Correspondence to Amaresh Chandra Mishra.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandon, P., Mishra, A.C. The effect of magnetic field orientation on the magnetoimpedance of electroplated NiFeCo/Cu wire. J Mater Sci: Mater Electron 33, 18311–18326 (2022). https://doi.org/10.1007/s10854-022-08686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08686-9

Navigation