Skip to main content
Log in

Synthesis of the oxide NiSb2O6 and its electrical characterization in toxic atmospheres for its application as a gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, nanoparticles of the trirutile-type oxide NiSb2O6 were synthesized for its application as a gas sensor using the colloidal method assisted by microwave radiation. The crystalline evolution of the powders was analyzed by X-ray diffraction, finding the phase NiSb2O6 at 600 °C. SEM micrographs revealed the growth of microspheres, microrods, and irregularly shaped particles. Using TEM, the average size of the nanoparticles was calculated at ~ 17.1 nm. For dynamic tests, pellets and thick films were made from the powders calcined at 600 °C. For the thick films, alternating current was used at frequencies of 0.1 and 1 kHz in C3H8 and CO2 atmospheres at 360 °C, where the material’s sensitivity magnitude in CO2 was ~ 2.61% (0.1 kHz) and ~ 2.97% (1 kHz). In contrast, for C3H8, the sensitivity was ~ 6.69% (0.1 kHz) and ~ 5.12% (1 kHz) on average. For the pellets, direct current signals and volumetric flow rates of 100, 150, and 200 cm3/min of CO at 200 °C were applied, where the sensitivities were ~ 24.37, ~ 35.33, and ~ 40.77%, respectively. In each test, the sensitivity visibly increased when the gases were injected. Likewise, the response and recovery times decreased when the frequency and gas concentration increased. The results obtained for the trirutile-type oxide NiSb2O6, which showed good stability, efficiency, and high sensitivity in CO2, C3H8, and CO atmospheres, make it ideal as a toxic gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.M. Arafat, B. Dinan, S.A. Akbar, Sensors 12, 7207–7258 (2012)

    Article  CAS  Google Scholar 

  2. D.A. Mirabella, C. Buono, C.M. Aldao, D.E. Resasco, Sens. Actuators B 285, 232–239 (2019)

    Article  CAS  Google Scholar 

  3. A. Guillén, V.M. Rodríguez, M. Flores, O. Blanco, J. Reyes, L. Gildo, H. Guillén, Sensors 14, 15802–15814 (2014)

    Article  CAS  Google Scholar 

  4. M. Al-Hashem, S. Akbar, P. Morris, Sens. Actuators B 301, 126845 (2019)

    Article  CAS  Google Scholar 

  5. S. Mahajan, S. Jagtap, Appl. Mater. Today. 18, 100483 (2020)

    Article  Google Scholar 

  6. Y. Lin, Z. Fan, Mater. Sci. Semicond. Process. 107, 104820 (2020)

    Article  CAS  Google Scholar 

  7. H. Yang, X. Bai, P. Hao, J. Tian, Y. Bo, X. Wang, H. Liu, Sens. Actuators B 280, 34–40 (2019)

    Article  CAS  Google Scholar 

  8. B. Yuliarto, G. Gumilar, N.L.W. Septiani, Adv. Mater. Sci. Eng. 2015, 1–14 (2015)

    Article  CAS  Google Scholar 

  9. V.S. Bhati, M. Hojamberdiev, M. Kumar, Energy Rep. 6, 46–62 (2020)

    Article  Google Scholar 

  10. A. Maity, S. Mitra, C. Das, S. Siraj, A.K. Raychaudhuri, B. Ghosh, Mater. Res. Bull. 136, 111142 (2021)

    Article  CAS  Google Scholar 

  11. A.S. Chizhov, M.N. Rumyantseva, K.A. Drozdov, I.V. Krylov, M. Batuk, J. Hadermann, D.G. Filatova, N.O. Khmelevsky, V.F. Kozlovsky, L.N. Maltseva, A.M. Gaskov, Sens. Actuators B 329, 129035 (2021)

    Article  CAS  Google Scholar 

  12. Y. Li, Z. Yuan, F. Meng, Sensors 20, 1–22 (2020)

    Article  CAS  Google Scholar 

  13. P.S. Mkwae, I. Kortidis, R.E. Kroon, N. Leshabane, M. Jozela, H.C. Swart, S.S. Nkosi, J. Mater. Res. Technol. 9, 16252–16269 (2020)

    Article  CAS  Google Scholar 

  14. A. Singh, A. Singh, S. Singh, P. Tandon, Chem. Phys. Lett. 646, 41–46 (2016)

    Article  CAS  Google Scholar 

  15. E.S. Guillén-López, F. López-Urías, E. Muñoz-Sandoval, M. Courel-Piedrahita, M. Sanchez-Tizapa, H. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, O. Blanco-Alonso, A. Guillén-Bonilla, J.P. Morán-Lázaro, Mater. Today Commun. 26, 102138 (2021)

    Article  CAS  Google Scholar 

  16. G. Korotcenkov, Mater. Sci. Eng. B. 139, 1–23 (2007)

    Article  CAS  Google Scholar 

  17. F. Liu, B. Wang, X. Yang, Y. Guan, Q. Wang, X. Liang, P. Sun, Y. Wang, G. Lu, Sens. Actuators B 240, 148–157 (2017)

    Article  CAS  Google Scholar 

  18. S. Singh, A. Singh, A. Singh, P. Tandon, RSC Adv. 10, 20349–20357 (2020)

    Article  CAS  Google Scholar 

  19. J.T. Guillén-Bonilla, H. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, A. Casillas-Zamora, J.A. Ramírez-Ortega, L. Gildo-Ortiz, M.E. Sánchez-Morales, O. Blanco-Alonso, A. Guillén-Bonilla, Appl. Sci. 9, 3799 (2019)

    Article  CAS  Google Scholar 

  20. D. Larcher, A.S. Prakash, L. Laffont, M. Womes, J.C. Jumas, J. Olivier-Fourcade, M.S. Hedge, J.M. Tarascon, J. Electrochem. Soc. 153, A1778–A1787 (2006)

    Article  CAS  Google Scholar 

  21. S. Zhang, Q. Wang, T. Lin, P. Zhang, P. He, K.W. Paik, J. Manuf. Process. 62, 546–554 (2021)

    Article  Google Scholar 

  22. Q. Wang, S. Zhang, T. Lin, P. Zhang, P. He, K.W. Paik, Prog. Nat. Sci. 31, 129–140 (2021)

    Article  CAS  Google Scholar 

  23. Q. Wang, S. Zhang, G. Liu, T. Lin, P. He, J. Alloys Compd. 820, 153184 (2020)

    Article  CAS  Google Scholar 

  24. C. Dhand, N. Dwivedi, X.J. Loh, A.N. Jie Ying, N.K. Verma, R.W. Beuerman, R. Lakshminarayanan, S. Ramakrishna, RSC Adv. 5, 105003–105037 (2015)

    Article  CAS  Google Scholar 

  25. A. Mirzaei, G. Neri, Sens. Actuators B 237, 749–775 (2016)

    Article  CAS  Google Scholar 

  26. C.R. Michel, A.H. Martínez-Preciado, J.P. Morán-Lázaro, Sens. Actuators B 140, 149–154 (2009)

    Article  CAS  Google Scholar 

  27. E. Matijević, Chem. Mater. 5, 412–426 (1993)

    Article  Google Scholar 

  28. V.V. Gorbunov, A.A. Shidlovskii, L.F. Shmagin, Combust Explos Shock Waves 19, 172–173 (1983)

    Article  Google Scholar 

  29. Z. Deng, C. Wang, X. Sun, Y. Li, Inorg. Chem. 41, 869–873 (2002)

    Article  CAS  Google Scholar 

  30. X. Wang, Y. Li, Inorg. Chem. 45, 7522–7534 (2006)

    Article  CAS  Google Scholar 

  31. V.K. LaMer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847–4854 (1950)

    Article  CAS  Google Scholar 

  32. V. Polshettiwar, B. Baruwati, R.S. Varma, ACS Nano 3, 728–736 (2009)

    Article  CAS  Google Scholar 

  33. K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, Sens. Rev. 24, 181–198 (2004)

    Article  Google Scholar 

  34. M.R. Cavallari, L.M. Pastrana, C.D.F. Sosa, A.M.R. Marquina, J.E.E. Izquierdo, F.J. Fonseca, C.A. de Amorim, L.G. Paterno, I. Kymissis, Materials 14, 1–32 (2021)

    Google Scholar 

  35. D. Koziej, N. Bârsan, V. Hoffmann, J. Szuber, U. Weimar, Sens. Actuators B 108, 75–83 (2005)

    Article  CAS  Google Scholar 

  36. H. Tsuji, A. Okamura-Yoshida, T. Shishido, H. Hattori, Langmuir 19, 8793–8800 (2003)

    Article  CAS  Google Scholar 

  37. C.R. Michel, H. Guillén-Bonilla, A.H. Martínez-Preciado, J.P. Morán-Lázaro, Sens. Actuators B 143, 278–285 (2009)

    Article  CAS  Google Scholar 

  38. C.R. Michel, A.H. Martínez, S. Jiménez, Sens. Actuators B 132, 45–51 (2008)

    Article  CAS  Google Scholar 

  39. A. Guillén, O. Blanco, J.T. Guillén, M.L. de la Olvera-Amador, V.M. Rodríguez, A. Sánchez, J.P. Morán, M. Martínez-García, H. Guillén, J. Mater. Sci. Mater. Electron. 29, 15632–15642 (2018)

    Article  CAS  Google Scholar 

  40. A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, H. Guillén-Bonilla, L. Gild-Ortiz, O. Blanco-Alonso, N.E. Franco-Rodríguez, J. Reyes-Gómez, A. Casillas-Zamora, J.T. Guillen-Bonilla, J. Mater. Sci. Mater. Electron. 29, 15741–15753 (2018)

    Article  CAS  Google Scholar 

  41. S. Pourteimoor, H. Haratizadeh, J. Mater. Sci. Mater. Electron. 28, 18529–18534 (2017)

    Article  CAS  Google Scholar 

  42. J. Herrán, G.G. Mandayo, E. Castaño, Sens. Actuators B 127, 370–375 (2007)

    Article  CAS  Google Scholar 

  43. A. Chapelle, F. Oudrhiri-Hassani, L. Presmanes, A. Barnabé, P. Tailhades, Appl. Surf. Sci. 256, 4715–4719 (2010)

    Article  CAS  Google Scholar 

  44. J.T. Guillén-Bonilla, H. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, A. Guillén-Bonilla, A. Casillas-Zamora, O. Blanco-Alonso, J.A. Ramírez-Ortega, J. Sens. 2021, 1–11 (2021)

    Article  CAS  Google Scholar 

  45. E. Huízar-Padilla, H. Guillén-Bonilla, A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, A. Sánchez-Martínez, J.T. Guillen-Bonilla, L. Gildo-Ortiz, J. Reyes-Gómez, Sensors 21, 2362 (2021)

    Article  CAS  Google Scholar 

  46. H.J. Kim, J.H. Lee, Sens. Actuators B 192, 607–627 (2014)

    Article  CAS  Google Scholar 

  47. X. Gao, T. Zhang, Sens. Actuators B 277, 604–633 (2018)

    Article  CAS  Google Scholar 

  48. S.C. Chang, J. Vac. Sci. Technol. 17, 366–369 (1979)

    Article  Google Scholar 

  49. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088–2106 (2010)

    Article  CAS  Google Scholar 

  50. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10, 5469–5502 (2010)

    Article  CAS  Google Scholar 

  51. S. Singh, A. Singh, A. Singh, S. Rathore, B.C. Yadav, P. Tandon, RSC Adv. 10, 33770–33781 (2020)

    Article  CAS  Google Scholar 

  52. D. Degler, Sensors 18, 3544 (2018)

    Article  CAS  Google Scholar 

  53. A. Dey, Mater. Sci. Eng. B 229, 206–217 (2018)

    Article  CAS  Google Scholar 

  54. A. Fioravanti, P. Marani, S. Morandi, S. Lettieri, M. Mazzocchi, M. Sacerdoti, M.C. Carotta, Sensors 21, 1–18 (2021)

    Article  CAS  Google Scholar 

  55. T. Lin, X. Lv, S. Li, Q. Wang, Sensors 17, 2779 (2017)

    Article  CAS  Google Scholar 

  56. V.K. Jayaraman, A. Maldonado Álvarez, M.L. de la Olvera Amador, Mater. Lett. 157, 169–171 (2015)

    Article  CAS  Google Scholar 

  57. R. Wimmer-Teubenbacher, F. Sosada-Ludwikowska, B.Z. Travieso, S. Defregger, O. Tokmak, J.S. Niehaus, M. Deluca, A. Köck, Chemosensors 6, 1–16 (2018)

    Article  CAS  Google Scholar 

  58. T. Nandy, R.A. Coutu, C. Ababei, Sensors 18, 3443 (2018)

    Article  CAS  Google Scholar 

  59. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B 160, 580–591 (2011)

    Article  CAS  Google Scholar 

  60. E. Fazio, S. Spadaro, C. Corsaro, G. Neri, S.G. Leonardi, F. Neri, N. Lavanya, C. Sekar, N. Donato, G. Neri, Sensors 21, 2494 (2021)

    Article  CAS  Google Scholar 

  61. G. Carbajal-Francoa, A. Tiburcio-Silver, J.M. Domínguez, A. Sanchez-Juarez, Thin Solid Films 373, 141–144 (2000)

    Article  Google Scholar 

  62. K. Arshak, I. Gaidan, Mater. Sci. Eng. B 118, 44–49 (2005)

    Article  CAS  Google Scholar 

  63. C.C. Hsiao, L.S. Luo, Sensors 14, 12219–12232 (2014)

    Article  CAS  Google Scholar 

  64. G. Bläser, T. Rühl, C. Diehl, M. Ulrich, D. Kohl, Physica A 266, 218–223 (1999)

    Article  Google Scholar 

  65. A.K. Singh, S.B. Patil, U.T. Nakate, K.V. Gurav, J. Chem. 2013, 1–8 (2013)

    Google Scholar 

  66. M.I. Baraton, L. Merhari, Rev. Adv. Mater. Sci. 4, 15–24 (2003)

    CAS  Google Scholar 

  67. N.J. Dayan, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, Thin Solid Films 325, 254–258 (1998)

    Article  CAS  Google Scholar 

  68. V.E. Bochenkov, G.B. Sergeev, Adv. Colloid Interface Sci. 116, 245–254 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mexico’s National Council of Science and Technology (CONACyT), and the University of Guadalajara for the support granted. Jorge-Alberto Ramírez-Ortega thanks CONACyT for a PhD scholarship. Likewise, we thank Dra. M. de la Luz Olvera Amador, Dr. Víctor Manuel Soto García, Dr. Jaime Santoyo Salazar and Miguel Ángel Luna Arias for their technical assistance. This research was carried out following the line of research “Nanostructured Semiconductor Oxides” of the academic group UDG-CA-895 “Nanostructured Semiconductors” of CUCEI, University of Guadalajara.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

JAR-O and AG-B synthetized the NiSb2O6 Oxide Powders; HG-B, VMR-B, AS-M and LG-O developed the Physical characterization of NiSb2O6 Powders; JTG-B, EH-P and JR-G developed the electrical characterization of NiSb2O6 oxide powders. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Héctor Guillén-Bonilla or Lorenzo Gildo-Ortiz.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Ortega, J.A., Guillén-Bonilla, H., Guillén-Bonilla, A. et al. Synthesis of the oxide NiSb2O6 and its electrical characterization in toxic atmospheres for its application as a gas sensor. J Mater Sci: Mater Electron 33, 18268–18283 (2022). https://doi.org/10.1007/s10854-022-08683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08683-y

Navigation