Skip to main content
Log in

Electrochemically prepared Fe: NiO thin film catalysis for oxygen evolution reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrocatalysis-based nickel oxide (NiO) films and doped with various amount of iron were synthesized on stainless steel (SS) substrate by electrodeposition. X-ray diffraction analysis (XRD) and filed effect scanning electron microscopy (FE-SEM) utilized to investigate structural and morphological properties. The X-ray diffraction analysis polycrystalline cubic structure has confirmed. Surface morphology study revealed the grains are regularly scattered over the total surface of the substrates after doping. The oxygen evolution reaction (OER) properties of doped films more efficient than that of pure thin films. The 4% Fe:NiO films exhibited an over potential of 320 mV at 10 mA cm−2 current density and a Tafel slope of 89.80 mV dec−1. The electrode shows the high durability over 5 h with small degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (htt://creative commons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

  1. M.I. Jamesh, Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J. Power Sources 333, 213–236 (2016)

    Article  CAS  Google Scholar 

  2. M.I. Jamesh, A.S. Prakash, Advancement of technology towards developing Na-ion batteries. J. Power Sources 378, 268–300 (2018)

    Article  CAS  Google Scholar 

  3. S.B. Lai, M.I. Jamesh, X.C. Wu et al., A promising energy storage system: rechargeable Ni–Zn battery. Rare Met. 36, 381–396 (2017)

    Article  CAS  Google Scholar 

  4. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    Article  CAS  Google Scholar 

  5. H. Wang, H. Dai, Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 42, 3088–3113 (2013)

    Article  CAS  Google Scholar 

  6. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010)

    Article  CAS  Google Scholar 

  7. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011)

    Article  CAS  Google Scholar 

  8. M.D. Symes, L. Cronin, Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 5, 403–409 (2013)

    Article  CAS  Google Scholar 

  9. M. Sathiya, K. Hemalatha, K. Ramesh, J.M. Tarascon, A.S. Prakash, Synthesis, structure and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem. Mater. 24, 1846–1853 (2012)

    Article  CAS  Google Scholar 

  10. J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2004)

    Article  CAS  Google Scholar 

  11. N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. Unit. States Am. 103, 15729–15735 (2006)

    Article  CAS  Google Scholar 

  12. L.V. Wing-hei, K. Daniel, K. Hatice, P. Filip, P. Marie-Claire, R. Erwin, J. Gunnar, Dark photocatalysis: storage of solar energy in carbon nitride for time-delayed hydrogen generation. Angew. Chem. Int. Ed. 129, 525–529 (2017)

    Article  Google Scholar 

  13. Z.L. Wang, D. Xu, J.J. Xu, X.B. Zhang, Oxygen electrocatalysts in metal-ion batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43, 7746–7786 (2014)

    Article  CAS  Google Scholar 

  14. G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, The hydrogen economy. Phys. Today 57, 39–44 (2004)

    Article  CAS  Google Scholar 

  15. M.S. Dresselhaus, I.L. Thomas, Alternative energy technologies. Nature 414, 332–337 (2001)

    Article  CAS  Google Scholar 

  16. C.L. Choi, J. Feng, Y. Li, J. Wu, A. Zak, R. Tenne, H. Dai, WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 6, 921–928 (2013)

    Article  CAS  Google Scholar 

  17. K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010)

    Article  CAS  Google Scholar 

  18. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  Google Scholar 

  19. C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015)

    Article  CAS  Google Scholar 

  20. L. Ai, Z. Niu, J. Jiang, Mechanistic insight into oxygen evolution electrocatalysis of surface phosphate modified cobalt phosphide nonorod bundles and their superior performance for overall water splitting. Electrochim. Acta 242, 355–363 (2017)

    Article  CAS  Google Scholar 

  21. P.T. Babar, B.S. Pawar, A.C. Lokhande, M.G. Gang, J.S. Jang, M.P. Suryawanshi, S.M. Pawar, J.K. Hyeok, Annealing temperature dependent catalytic water oxidation activity of iron oxyhydroxide thin films. J. Energy Chem. 26(4), 757–761 (2017)

    Article  Google Scholar 

  22. S.M. Pawar, B.S. Pawar, B. Hou, J. Kim, A. Ahmed, H.S. Chavan, Y. Jo, S. Cho, A.I. Inamdar, J.L. Gunjakar, H. Kim, S. Cha, H. Im, Self-assembled two dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. J. Mater. Chem. A 5, 12747–12751 (2017)

    Article  CAS  Google Scholar 

  23. P.T. Babar, A.C. Lokhande, B.S. Pawar, M.G. Gang, E. Jo, M.P. Changsik Go, S.M.P. Suryawanshi, J.H. Kim, Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Appl. Surf. Sci. 427, 253–259 (2018)

    Article  CAS  Google Scholar 

  24. H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Transition metal (Fe Co, Ni and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 11(5), 601–625 (2016)

    Article  CAS  Google Scholar 

  25. R.J. Deokate, S.H. Mujawar, H.S. Chavan, S.S. Mali, C.K. Hong, H. Im, A.I. Inamdar, Chalcogenide nanocomposite electrodes grown by chemical etching of Ni-foam as electrocatalyst for efficient oxygen evolution reaction. Int. J. Ener. Research 44(2), 1233–1243 (2020)

    Article  CAS  Google Scholar 

  26. R.L. Doyle, I.J. Godwin, M.P. Brandon, M.E.G. Lyons, Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modifies electrods. Phys. Chem. Chem. Phys. 15, 13737–13783 (2013)

    Article  CAS  Google Scholar 

  27. M. Cappadonia, J. Divisek, T. von der Heyden, U. Stimming, Oxygen evolution at nickel anodes in concentrated alkaline solution. Electrochim. Acta 39, 1559–1564 (1994)

    Article  CAS  Google Scholar 

  28. B.S. Yeo, A.T. Bell, In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. Phys. Chem. C 116, 8394–8400 (2012)

    Article  CAS  Google Scholar 

  29. F. Foerster, A. Piguet, Physikalische Chemie 10, 714–721 (1904)

    Google Scholar 

  30. H.N. Seiger, R.C. Shair, Oxygen evolution from heavily doped nickel oxide electrodes. J. Electrochem. Soc. 108, C163–C163 (1961)

    Google Scholar 

  31. R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012)

    Article  CAS  Google Scholar 

  32. L. Han, S. Dong, E. Wang, Transition-metal (Co, Ni and Fe)- based electrocatalysts for the water oxidation reaction. Adv. Mater. 28, 9266–9291 (2016)

    Article  CAS  Google Scholar 

  33. D.M. Jang, I.H. Kwak, E.L. Kwon, C.S. Jung, H.S. Im, K. Park, J. Park, Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution. J. Phys. Chem. C 119(4), 1921–1927 (2015)

    Article  CAS  Google Scholar 

  34. S. Han, S. Liu, S. Yin, L. Chen, Z. He, Electrodeposited Co-doped Fe3O4 thin films as efficient catalysts for the oxygen evolution reaction. Electrochim. Acta 210, 942–949 (2016)

    Article  CAS  Google Scholar 

  35. A. Khan, M. Shkir, S.A. Ansari, S. Nazish Parveen, A.M. AlFaify, R.K. El-Toni, S.F.A. Gupta, One-pot flash combustion synthesis of Fe@NiO nanocomposites for supercapacitor applications. Ceram Int 47, 9024–9033 (2021)

    Article  CAS  Google Scholar 

  36. Wu. Zhengcui, Z. Zou, J. Huang, F. Gao, Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J. Catal. 358, 243–252 (2018)

    Article  CAS  Google Scholar 

  37. M.W. Louie, A.T. Bell, An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013)

    Article  CAS  Google Scholar 

  38. A.C. Pebley, E. Decolvenaere, T.M. Pollock, M.J. Gordon, Oxygen evolution on Fe-doped NiO electrocatalysts deposited via microplasma. Nanoscale 9, 15070–15082 (2017)

    Article  CAS  Google Scholar 

  39. L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014)

    Article  CAS  Google Scholar 

  40. P. Wang, Z. Pu, Y. Li, L. Wu, Z. Tu, M. Jiang, Z. Kou, I.S. Amiinu, S. Mu, Iron-doped nickel phosphide nanosheet arrays: an efficient bifunctional electrocatalyst for water splitting. ACS Appl Mater. Interfaces 9, 26001–26007 (2017)

    Article  CAS  Google Scholar 

  41. JCPDS card no. 47–1049

  42. P. Scherrer, Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  43. R.S. Kate, S.C. Bulakhe, R.J. Deokate, Co doping effect on structural and optical properties of nickel oxide (NiO) thin films via spray pyrolysis. Opt. Quant. Electron. 51(10), 1–19 (2019)

    Article  CAS  Google Scholar 

  44. J. Yan, L. Kong, Y. Ji, J. White, Y. Li, J. Zhang, P. An, S. Liu, S.T. Lee, T. Ma, Single atom tungsten doped ultrathin α-Ni (OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 10, 2149 (2019)

    Article  CAS  Google Scholar 

  45. R.J. Deokate, H.S. Chavan, S.C. Bulakhe, S.B. Tanwade, S.H. Mujawar, S.S. Mali, C.K. Hong, H. Im, A.I. Inamdar, Electrodeposited bimetallic microporous MnCu oxide electrode as a highly stable electrocatalyst for oxygen evolution reaction. Short Commun, Int. J. Energy Res., 46(4), 5269–5279 (2022)

    Article  CAS  Google Scholar 

  46. W. Gao, Z.M. Xia, F.X. Cao, J.C. Ho, Z. Jiang, Y.Q. Qu, Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: embedded or surface-loaded. Adv Funct. Mater 28, 1706056 (2018)

    Article  CAS  Google Scholar 

  47. M. Dinca, Y. Surendranath, D.G. Nocera, Nickel-borate ̌ oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. U. S. A. 107, 10337–10341 (2010)

    Article  Google Scholar 

  48. K.-L. Yan, X. Shang, Z. Li, B. Dong, X. Li, W.-K. Gao, J.-Q. Chi, Y.-M. Chai, C.-G. Liu, Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. 416, 371–378 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like acknowledge to Vidya Pratishtan’s, Arts, Science and Commerce College, Baramati, for support of Central Instrumentation Facility (CIF) by DST-FIST. Anekant Education Societies Tuljaram Chaturchand College, Baramati as research center.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SCB: Writing-Original draft preparation, Methodology. RJ Deokate: Writing, reviewing and editing.

Corresponding author

Correspondence to R. J. Deokate.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulakhe, S.C., Deokate, R.J. Electrochemically prepared Fe: NiO thin film catalysis for oxygen evolution reaction. J Mater Sci: Mater Electron 33, 18180–18186 (2022). https://doi.org/10.1007/s10854-022-08674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08674-z

Navigation