Skip to main content

Advertisement

Log in

High-performance FAPbBr3 perovskite solar cells using dual-function bathocuproine interlayer for surface passivation and energy level alignment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Wide-bandgap pure bromide-based hybrid perovskite solar cells (PSCs), with the advantages of high open-circuit voltage, and superior environmental stability, have potential applications in tandem solar cells and building-integrated photovoltaics. However, the open-circuit voltage (Voc) and the power conversion efficiency (PCE) of bromide-based PSCs are relatively low. In this work, a bathocuproine (BCP) interlayer, instead of conventional PCBM, was employed between the FAPbBr3 absorber and electron transport layer (ETL). The resulting energy level difference of FAPbBr3/BCP was much lower compared with that of FAPbBr3/PCBM, which was expected to facilitate the charge transport. More importantly, it was demonstrated that the BCP interlayer had strong passivation on the FAPbBr3 surface through coordination of N and Pb as well as N-H hydrogen bonding. Accordingly, the inverted planar FAPbBr3 PSC possessed a high PCE of 8.02% and Voc of 1.430 V. In addition, the PSCs with a BCP buffer layer exhibited better air stability compared with that with PCBM films. This work provides new insight into the BCP interlayer, which has dual functions as surface passivation and energy level alignment with FAPbBr3 films, paving the way toward realizing high-performance FAPbBr3 perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N. R. E. Laboratory Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html

  2. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  3. T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen, S. Zhang, M. Cai, S. Dai, J. Zhang, J. Liu, Z. Zhou, X. Liu, H. Segawa, H. Tan, Q. Tang, J. Fang, Y. Li, L. Ding, Z. Ning, Y. Qi, Y. Zhang, L. Han, The main progress of perovskite solar cells in 2020–2021. Nanomicro Lett. 13(1), 152 (2021)

    CAS  Google Scholar 

  4. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)

    Article  CAS  Google Scholar 

  5. H. Zhang, X. Ji, H. Yao, Q. Fan, B. Yu, J. Li, Review on efficiency improvement effort of perovskite solar cell. Sol Energy 233, 421–434 (2022)

    Article  CAS  Google Scholar 

  6. N. Arora, M.I. Dar, M. Abdi-Jalebi, F. Giordano, N. Pellet, G. Jacopin, R.H. Friend, S.M. Zakeeruddin, M. Grätzel, Intrinsic and extrinsic stability of formamidinium lead bromide perovskite solar cells yielding high photovoltage. Nano Lett. 16(11), 7155–7162 (2016)

    Article  CAS  Google Scholar 

  7. F.C. Hanusch, E. Wiesenmayer, E. Mankel, A. Binek, P. Angloher, C. Fraunhofer, N. Giesbrecht, J.M. Feckl, W. Jaegermann, D. Johrendt, T. Bein, P. Docampo, Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J. Phys. Chem. Lett. 5(16), 2791–2795 (2014)

    Article  CAS  Google Scholar 

  8. Y. Liang, Y. Wang, C. Mu, S. Wang, X. Wang, D. Xu, L. Sun, Achieving high open-circuit voltages up to 1.57 V in hole-transport-material-free MAPbBr3 solar cells with carbon electrodes. Adv. Energy Mater. 8(4), 1701159 (2018)

    Article  Google Scholar 

  9. Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang, X. Yang, Y. Duan, Q. Tang, Tailored lattice “tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V. Adv. Sci. 8(19), 2101418 (2021)

    Article  CAS  Google Scholar 

  10. C. Liu, H. Dong, Z. Zhang, W. Chai, L. Li, D. Chen, W. Zhu, H. Xi, J. Zhang, C. Zhang, Y. Hao, Promising applications of wide bandgap inorganic perovskites in underwater photovoltaic cells. Sol Energy 233, 489–493 (2022)

    Article  CAS  Google Scholar 

  11. R. He, S. Ren, C. Chen, Z. Yi, Y. Luo, H. Lai, W. Wang, G. Zeng, X. Hao, Y. Wang, J. Zhang, C. Wang, L. Wu, F. Fu, D. Zhao, Wide-bandgap organic–inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 14(11), 5723–5759 (2021)

    Article  CAS  Google Scholar 

  12. J.H. Heo, D.H. Song, S.H. Im, Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26(48), 8179–8183 (2014)

    Article  CAS  Google Scholar 

  13. Y. Zhang, Y. Liang, Y. Wang, F. Guo, L. Sun, D. Xu, Planar FAPbBr3 solar cells with power conversion efficiency above 10%. ACS Energy Lett. 3(8), 1808–1814 (2018)

    Article  CAS  Google Scholar 

  14. J. Zhu, B. He, X. Yao, H. Chen, Y. Duan, J. Duan, Q. Tang, Phase control of Cs-Pb-Br derivatives to suppress 0D Cs4PbBr6 for high-efficiency and stable all-inorganic CsPbBr3 perovskite solar cells. Small 18(8), 2106323 (2021)

    Article  Google Scholar 

  15. L. Liu, S.-E. Yang, P. Liu, Y. Chen, High-quality and full-coverage CsPbBr3 thin films via electron beam evaporation with post-annealing treatment for all-inorganic perovskite solar cells. Sol Energy 232, 320–327 (2022)

    Article  CAS  Google Scholar 

  16. N. Arora, S. Orlandi, M.I. Dar, S. Aghazada, G. Jacopin, M. Cavazzini, E. Mosconi, P. Gratia, F. De Angelis, G. Pozzi, M. Graetzel, M.K. Nazeeruddin, High open-circuit voltage: Fabrication of formamidinium lead bromide perovskite solar cells using fluorene–dithiophene derivatives as hole-transporting materials. ACS Energy Lett 1(1), 107–112 (2016)

    Article  CAS  Google Scholar 

  17. Y. Ko, Y. Kim, C. Lee, Y. Kim, B.K. Min, H. Gwon, Y.J. Yun, Y. Jun, Microtuning of the wide-bandgap perovskite lattice plane for efficient and robust high-voltage planar solar cells exceeding 1.5 V. ACS Appl. Energ. Mater. 3(3), 2331–2341 (2019)

    Article  Google Scholar 

  18. A.S. Subbiah, S. Agarwal, N. Mahuli, P. Nair, M. van Hest, S.K. Sarkar, Stable p–i–n FAPbBr3 devices with improved efficiency using sputtered ZnO as electron transport layer. Adv. Mater. Interfaces 4(8), 1601143 (2017)

    Article  Google Scholar 

  19. X. Hu, X.-F. Jiang, X. Xing, L. Nian, X. Liu, R. Huang, K. Wang, H.-L. Yip, G. Zhou, Wide-bandgap perovskite solar cells with large open-circuit voltage of 1653 mV through interfacial engineering. Sol. RRL 2(8), 1800083 (2018)

    Article  Google Scholar 

  20. T. Liu, Z. Wang, L. Lou, S. Xiao, S. Zheng, S. Yang, Interfacial post-treatment for enhancing the performance of printable carbon‐based perovskite solar cells. Sol. RRL 4(2), 1900278 (2019)

    Article  Google Scholar 

  21. W. Li, M.U. Rothmann, Y. Zhu, W. Chen, C. Yang, Y. Yuan, Y.Y. Choo, X. Wen, Y.-B. Cheng, U. Bach, J. Etheridge, The critical role of composition-dependent intragrain planar defects in the performance of ma1–xfaxpbi3 perovskite solar cells. Nat. Energy 6(6), 624–632 (2021)

    Article  CAS  Google Scholar 

  22. Y.H. Lin, N. Sakai, P. Da, J. Wu, H.C. Sansom, A.J. Ramadan, S. Mahesh, J. Liu, R.D.J. Oliver, J. Lim, L. Aspitarte, K. Sharma, P.K. Madhu, A.B. Morales-Vilches, P.K. Nayak, S. Bai, F. Gao, C.R.M. Grovenor, M.B. Johnston, J.G. Labram, J.R. Durrant, J.M. Ball, B. Wenger, B. Stannowski, H.J. Snaith, A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369(6499), 96–102 (2020)

    Article  CAS  Google Scholar 

  23. A.K. Jena, A. Ishii, Z. Guo, M.A. Kamarudin, S. Hayase, T. Miyasaka, Cesium acetate-induced interfacial compositional change and graded band level in MAPbI3 perovskite solar cells. ACS Appl. Mater. Interfaces 12(30), 33631–33637 (2020)

    Article  CAS  Google Scholar 

  24. W. Han, X. Liu, X. Zhang, Y. Ding, Y. Guo, Bifunctional-based small molecule as multifunctional additive for improved performance of perovskite solar cells. Org. Electron. 96, 106226 (2021)

    Article  CAS  Google Scholar 

  25. M.N. Hou, Y.Z. Xu, Y. Tian, Y. Wu, D.K. Zhang, G.C. Wang, B.Z. Li, H.Z. Ren, Y.L. Li, Q. Huang, Y. Ding, G. Hou, Y. Zhao, X.D. Zhang, Synergistic effect of MACl and DMF towards efficient perovskite solar cells. Org. Electron. 88, 106005 (2021)

    Article  CAS  Google Scholar 

  26. D. Huang, P. Xie, Z. Pan, H. Rao, X. Zhong, One-step solution deposition of CsPbBr3 based on precursor engineering for efficient all-inorganic perovskite solar cells. J. Mater. Chem. A 7(39), 22420–22428 (2019)

    Article  CAS  Google Scholar 

  27. L. Yu, J. Zhang, H. Yuan, H. Sun, X. Gan, Z. Hu, Y. Zhu, Low-temperature preparation of CsPbI2Br for efficient and stable perovskite solar cells. ACS Appl. Energ. Mater. 3(1), 1076–1081 (2019)

    Article  Google Scholar 

  28. S. Yuan, Y. Cai, S. Yang, H. Zhao, F. Qian, Y. Han, J. Sun, Z. Liu, S. Liu, Simultaneous cesium and acetate coalloying improves efficiency and stability of FA0.85MA0.15PbI3 perovskite solar cell with an efficiency of 21.95%. Sol. RRL 3(9), 1900220 (2019)

    Article  Google Scholar 

  29. X. Duan, X. Li, L. Tan, Z. Huang, J. Yang, G. Liu, Z. Lin, Y. Chen, Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 32(26), 2000617 (2020)

    Article  CAS  Google Scholar 

  30. H. Kageyama, H. Kajii, Y. Ohmori, Y. Shirota, MoO3 as a cathode buffer layer material for the improvement of planar pn-heterojunction organic solar cell performance. Appl. Phys. Express 4(3), 032301 (2011)

    Article  Google Scholar 

  31. J. Liu, S. Shao, G. Fang, B. Meng, Z. Xie, L. Wang, High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO3-Al composite film as cathode buffer layer. Adv. Mater. 24(20), 2774–2779 (2012)

    Article  CAS  Google Scholar 

  32. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88(7), 073508 (2006)

    Article  Google Scholar 

  33. J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.K. Kim, C.S. Moon, N.J. Jeon, J.P. Correa-Baena, V. Bulovic, S.S. Shin, M.G. Bawendi, J. Seo, Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021)

    Article  CAS  Google Scholar 

  34. H. Dong, S. Pang, Y. Zhang, D. Chen, W. Zhu, H. Xi, J. Chang, J. Zhang, C. Zhang, Y. Hao, Improving electron extraction ability and device stability of perovskite solar cells using a compatible PCBM/AZO electron transporting bilayer. Nanomaterials (Basel) 8(9), 720 (2018)

    Article  Google Scholar 

  35. H. Sung, N. Ahn, M.S. Jang, J.-K. Lee, H. Yoon, N.-G. Park, M. Choi, Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6(3), 1501873 (2016)

    Article  Google Scholar 

  36. C. Liu, W. Li, J. Chen, J. Fan, Y. Mai, R.E.I. Schropp, Ultra-thin MoOX as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells. Nano Energy 41, 75–83 (2017)

    Article  CAS  Google Scholar 

  37. R. Chen, B. Long, S. Wang, Y. Liu, J. Bai, S. Huang, H. Li, X. Chen, Efficient and stable perovskite solar cells using bathocuproine bilateral-modified perovskite layers. ACS Appl. Mater. Interfaces 13(21), 24747–24755 (2021)

    Article  CAS  Google Scholar 

  38. D. Zhao, M. Sexton, H.-Y. Park, G. Baure, J.C. Nino, F. So, High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer. Adv. Energy Mater. 5(6), 1401855 (2015)

    Article  Google Scholar 

  39. J. Wan, X. Fan, H. Huang, J. Wang, Z. Zhang, J. Fang, F. Yan, Metal oxide-free flexible organic solar cells with 0.1 m perchloric acid sprayed polymeric anodes. J. Mater. Chem. A 8(40), 21007–21015 (2020)

    Article  CAS  Google Scholar 

  40. M. Zhang, R. Ming, W. Gao, Q. An, X. Ma, Z. Hu, C. Yang, F. Zhang, Ternary polymer solar cells with alloyed non-fullerene acceptor exhibiting 12.99% efficiency and 76.03% fill factor. Nano Energy 59, 58–65 (2019)

    Article  CAS  Google Scholar 

  41. B. Shi, L. Duan, Y. Zhao, J. Luo, X. Zhang, Semitransparent perovskite solar cells: from materials and devices to applications. Adv. Mater. 32(3), e1806474 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61875209 and 61774160), the Program for Ningbo Municipal Science and Technology Innovative Research Team (Nos. 2015B11002 and 2016B10005), Ningbo Natural Science Foundation (No. 202003N4032), and Ningbo Key Laboratory of Silicon and Organic Thin-Film Optoelectronic Technologies.

Author information

Authors and Affiliations

Authors

Contributions

LQ: conceptualization, validation, investigation, data curation, and writing—original draft; SF: conceptualization and data curation; SL: investigation; RM and XF: data curation and methodology; WZ and ZX: conceptualization and supervision; WW and WS: conceptualization, supervision, funding acquisition, project administration, and writing—review and editing.

Corresponding authors

Correspondence to Weiyan Wang or Weijie Song.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Fu, S., Li, S. et al. High-performance FAPbBr3 perovskite solar cells using dual-function bathocuproine interlayer for surface passivation and energy level alignment. J Mater Sci: Mater Electron 33, 18028–18038 (2022). https://doi.org/10.1007/s10854-022-08663-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08663-2

Navigation