Skip to main content

Atomic layer deposition of TiO2 thin films on glass fibers for enhanced photocatalytic activity

Abstract

Photocatalytic wastewater treatment is expected to become a sustainable way of eliminating toxic chemicals. Due to the surface-driven mechanism of the photocatalysis, surface area of the catalyst material plays a crucial role in the efficiency of the process, which is usually achieved by nanoparticles. However, using powder materials introduces a new problem: removing the catalyst materials out of clean water. As an alternative, atomic layer deposition (ALD) can form conformal thin films on high surface area substrates providing an immobilization route with high photocatalytic activity. Textile materials are inexpensive and accessible therefore good candidates for the substrate materials. Here, we deposit thin films on TiO2 on fiberglass fabrics and investigate the photocatalytic activity. Since the as-deposited ALD TiO2 films are amorphous, they have very limited photocatalytic activity. Upon thermal treatment of the films after deposition, photocatalytic activity is achieved. After four hours of exposure to the solar simulator and UV lamp, TiO2-coated fibers demonstrated much higher photocatalytic activity than films on planar substrates previously described in the literature. The photocatalytic activity and structure of the coated fibers were investigated using XRD, XPS, UV–Vis, and PL analyses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U. von Gunten, B. Wehrli, Annu. Rev. Environ. Resour. 35, 109 (2010)

    Article  Google Scholar 

  2. V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, RSC Adv. 2, 6380 (2012)

    CAS  Article  Google Scholar 

  3. K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, J. Photochem. Photobiol. C 9, 171 (2008)

    CAS  Article  Google Scholar 

  4. H.M. Coleman, B.R. Eggins, J.A. Byrne, F.L. Palmer, E. King, Appl. Catal. B 24, 3 (2000)

    Article  Google Scholar 

  5. P.R. Gogate, A.B. Pandit, Adv. Environ. Res. 8, 553 (2004)

    CAS  Article  Google Scholar 

  6. K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 13, 169 (2012)

    CAS  Article  Google Scholar 

  7. V. Dal Santo, A. Naldoni, Catalysts 8, 1 (2018)

    Article  Google Scholar 

  8. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, J. Hazard. Mater. 170, 560 (2009)

    CAS  Article  Google Scholar 

  9. S. Islam, H.I. Akyildiz, J. Mater. Sci. 32, 27027 (2021)

    CAS  Google Scholar 

  10. B. Liu, Y. Fang, Z. Li, S. Xu, J. Nanosci. Nanotechnol. 15, 889 (2015)

    CAS  Article  Google Scholar 

  11. K. Fischer, P. Schulz, I. Atanasov, A.A. Latif, I. Thomas, M. Kühnert, A. Prager, J. Griebel, A. Schulze, Catalysts 8, 9 (2018)

    Article  Google Scholar 

  12. M.E. Borges, M. Sierra, E. Cuevas, R.D. García, P. Esparza, Sol. Energy 135, 527 (2016)

    CAS  Article  Google Scholar 

  13. H.T. Chang, N.M. Wu, F. Zhu, Water Res. 34, 407 (2000)

    Article  Google Scholar 

  14. H.I. Akyildiz, S. Diler, S. Islam, J. Vacuum Sci. Technol. A 39, 022405 (2021)

    CAS  Article  Google Scholar 

  15. H. van Bui, F. Grillo, J.R. van Ommen, Chem. Commun. 53, 45 (2017)

    Article  Google Scholar 

  16. J. Iqbal, A. Jilani, P.M. Ziaul Hassan, S. Rafique, R. Jafer, A.A. Alghamdi, J. King Saud Univ. Sci. 28, 347 (2016)

    Article  Google Scholar 

  17. H.C. Guo, E. Ye, Z. Li, M.Y. Han, X.J. Loh, Mater. Sci. Eng. C 70, 1182 (2017)

    CAS  Article  Google Scholar 

  18. M.B. Johnson, M. Mehrvar, Ind. Eng. Chem. Res. 47, 6525 (2008)

    CAS  Article  Google Scholar 

  19. R.W. Johnson, A. Hultqvist, S.F. Bent, Mater. Today 17, 236 (2014)

    CAS  Article  Google Scholar 

  20. S.Y. Lee, S.J. Park, J. Ind. Eng. Chem. 19, 1761 (2013)

    CAS  Article  Google Scholar 

  21. Q. Xie, Y.L. Jiang, C. Detavernier, D. Deduytsche, R.L. van Meirhaeghe, G.P. Ru, B.Z. Li, X.P. Qu, J. Appl. Phys. 102, 083521 (2007)

    Article  Google Scholar 

  22. R. Khan, H. Ali-Löytty, A. Tukiainen, v. Tkachenko. Phys. Chem. Chem. Phys. 23, 17672 (2021)

    CAS  Article  Google Scholar 

  23. J. Lee, S.J. Lee, W.B. Han, H. Jeon, J. Park, W. Jang, C.S. Yoon, H. Jeon, Phys. Status Solidi A 210, 276 (2013)

    CAS  Article  Google Scholar 

  24. V.S. Dang, H. Parala, J.H. Kim, K. Xu, N.B. Srinivasan, E. Edengeiser, M. Havenith, A.D. Wieck, T.L. de Arcos, R.A. Fischer, A. Devi, Phys. Status Solidi A 211, 416 (2014)

    CAS  Article  Google Scholar 

  25. J.J. Ku-Herrera, F. Avilés, A. Nistal, Jv. Cauich-Rodríguez, F. Rubio, J. Rubio, P. Bartolo-Pérez, Appl. Surf. Sci. 330, 383 (2015)

    CAS  Article  Google Scholar 

  26. D. Shah, D.I. Patel, T. Roychowdhury, G.B. Rayner, N. O’Toole, D.R. Baer, M.R. Linford, J. Vacuum Sci. Technol. B 36, 062902 (2018)

    Article  Google Scholar 

  27. C. Jin, B. Liu, Z. Lei, and J. Sun, Nanoscale Res. Lett. 10, 1–9 (2015)

    Article  Google Scholar 

  28. S.A. Abdullah, M.Z. Sahdan, N. Nafarizal, H. Saim, A.S. Bakri, C.H. Cik, F. Rohaida, J. Phys. 995, 012067 (2018)

    Google Scholar 

  29. T. Padfield, S. Landi, Stud. Conserv. 11, 181 (1966)

    Google Scholar 

  30. G.T. Lim, D.H. Kim, Thin Solid Films 498, 254–258 (2006)

    CAS  Article  Google Scholar 

  31. B. Ohtani, Y. Ogawa, and S. I. Nishimoto, J. Phys. Chem. 101, 3746 (1997)

    CAS  Article  Google Scholar 

  32. G. Li, Z.Q. Liu, J. Lu, L. Wang, Z. Zhang, Appl. Surf. Sci. 255, 7323 (2009)

    CAS  Article  Google Scholar 

  33. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Sci. Rep. 4, 1 (2015)

    Article  Google Scholar 

  34. P. Kumari, N. Bahadur, L.A. O’Dell, L. Kong, A. Sadek, A. Merenda, L.F. Dumée, Sep. Purif. Technol. 258, 118011 (2021)

    CAS  Article  Google Scholar 

  35. P. Birnal, M.C. Marco de Lucas, I. Pochard, B. Domenichini, L. Imhoff, Appl. Surf. Sci. 512, 415 (2020)

    Article  Google Scholar 

  36. R. Pheamhom, C. Sunwoo, and D.-H. Kim, J. Vacuum Sci. Technol. A 24, 1535 (2006)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the generous funding support for this study in part from Bursa Uludag University (Grant # OUAP(MH)-2018/7) and the Scientific and Technological Research Council of Turkey (TUBITAK) (Grant Nos. # 118M617 and 218M275).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of both authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Halil I. Akyildiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 548.5 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Akyildiz, H.I. Atomic layer deposition of TiO2 thin films on glass fibers for enhanced photocatalytic activity. J Mater Sci: Mater Electron 33, 18002–18013 (2022). https://doi.org/10.1007/s10854-022-08661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08661-4