Skip to main content
Log in

Organic extract mediated synthesis of stable methylammonium lead bromide nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The growth of methylammonium lead bromide (CH3NH3PbBr3) nanoparticles using ligand-assisted Re-precipitation technique expending extract from the GAC fruit along with the anti-solvent is reported in the present work. The extract from Gac-aril was synthesized in N,N-dimethylformamide (DMF) solution. We report the presence of blue-green luminescence in the GAC aril extract. We demonstrate that the use of GAC-aril extract along with the anti-solvent for the growth of CH3NH3PbBr3 results in increasing the optical absorption bandwidth in the visible wavelength region relative to that of CH3NH3PbBr3 nanoparticles grown without the use of the GAC aril extract. The photoluminescence of CH3NH3PbBr3 nanoparticles prepared using the organic extract exhibits a blue emission at ~ 487 nm which is blue shifted relative to the green luminescence observed at ~ 528 nm in CH3NH3PbBr3 quantum dots prepared without the use of the extract. Bias dependent photo sensitivity is exhibited by the hetero-contact device structure glass/F:SnO2/TiO2/GAC-CH3NH3PbBr3// electrolyte/F:SnO2/glass engineered using the CH3NH3PbBr3 nanoparticles grown expending the organic extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available as it forms a part of the doctoral thesis that is yet to be awarded Ph.D degree.

References

  1. N.-G. Park, Mater. Today 18, 2 (2015)

    Article  Google Scholar 

  2. N. Kumar, J. Rani, R. Kurchania, Mater. Today: Proc. 46, 11 (2021)

    Google Scholar 

  3. R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, M.A. Green, J. Phys. Chem. C 119, 7 (2015)

    Article  Google Scholar 

  4. J. Chen, D. Jia, E.M.J. Johansson, A. Hagfeldt, X. Zhang, Energy Environ. Sci. 14, 10 (2021)

    Google Scholar 

  5. S. Chang, Q. Li, X. Xiao, K.Y. Wong, T. Chen, Energy Environ. Sci. 5, 11 (2012)

    Google Scholar 

  6. M. Sulaman, S. Yang, Y. Jiang, Yi. Tang, B. Zou, Nanotechnology 28, 50 (2017)

    Article  Google Scholar 

  7. Y. Tang, N. Yan, Z. Wang, H. Yuan, Y. Xin, H. Yin, J. Alloys Compd. 773, 30 (2019)

    Google Scholar 

  8. E. Kymakis, G.D. Spyropoulos, R. Fernandes, G. Kakavelakis, A.G. Kanaras, E. Stratakis, ACS Photonics 2, 6 (2015)

    Article  Google Scholar 

  9. Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H.W. Hillhouse, M. Law, Nano Lett. 10, 5 (2010)

    Article  CAS  Google Scholar 

  10. M. Kazes, T. Udayabhaskarara, S. Dey, D. Oron, Acc. Chem. Res. 54, 6 (2021)

    Article  Google Scholar 

  11. X. Tran, S. Parks, P. Roach, M. Nguyen, Exp. Agric. 56(1), 132 (2020)

    Article  Google Scholar 

  12. H.V. Chuyen, M.H. Nguyen, P.D. Roach, J.B. Golding, S.E. Parks, Int. J. Food Sci. 50, 3 (2015)

    Article  Google Scholar 

  13. A. Abirami, G. Nagarani, P. Siddhuraju, F. Sci, Hum. Wellness. 3, 1 (2014)

    Article  Google Scholar 

  14. L.T. Vuong, J.C. King, Food Nutr. Bull. 24, 4 (2003)

    Google Scholar 

  15. B.K. Ishida, C. Turner, M.H. Chapman, M.H. Chapman, J. Agric. Food Chem. 52, 2 (2004)

    Google Scholar 

  16. R. Jayakrishnan, A. Raj, S.J. Varma, Appl. Nanosci 11, 2095 (2021)

    Article  CAS  Google Scholar 

  17. A. Raj, R. Jayakrishnan, S.J. Varma, AIP Conf. Proc. 2265, 030148 (2020)

    Article  CAS  Google Scholar 

  18. J. Chaudhary, S. Choudhary, C.M.S. Negi, S.K. Gupta, A.S. Verma, Phys. Scr. 94, 10 (2019)

    Google Scholar 

  19. W.-L. Liu, Z.-R. Zheng, R.-B. Zhu, Z.-G. Liu, Xu. Da-Peng, Yu. Hua-Min, Wu. Wen-Zhi, A.-H. Li, Y.-Q. Yang, Su. Wen-Hui, J. Phys. Chem. A. 111, 40 (2007)

    Google Scholar 

  20. K. Nakada, Y. Matsumoto, Y. Shimoi, K. Yamada, Y. Furukawa, Molecules 24, 3 (2019)

    Article  Google Scholar 

  21. A.M.A. Leguy, A.R. Goñi, J.M. Frost, J. Skelton, F. Brivio, X. Rodríguez-Martínez, O.J. Weber, Phys. Chem. Chem. Phys. 18, 39 (2016)

    Article  Google Scholar 

  22. R. Jayakrishnan, A.M. Anand, V.G. Nair, Mater. Res. Express 6, 1250d9 (2020)

    Article  Google Scholar 

  23. R. Jayakrishnan, A. Raj, V.G. Nair, Semiconductors 55, 363 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the following funding agency for support provided. KSCSTE vide Grant No: KSCSTE/433/2018-KSYSA-RG. University of Kerala Start up Grant No. 20034/ Admn AV/2020/ UOK. KSCSTE SARD Grant No. 445/2016/KSCSTE

Author information

Authors and Affiliations

Authors

Contributions

JK-conceptualization, funding, analysis, writing, editing. AR-experiment, data collection. SP—dye extraction. GP—dye extraction.

Corresponding author

Correspondence to Ramakrishnan Jayakrishnan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10854_2022_8659_MOESM1_ESM.docx

Transmission Electron microscopy conducted on the CH3NH3PbBr3 colloidal solution is provided. The average particle size from the corresponding particle size distribution TEM histogram is found to be 4.1± 1.2 nm confirming the formation of quantum dots. The results of the phytochemical analysis conducted on the GAC aril extract is tabulated. Presence of Steroid, Glycosides, Fat and oil as major constituents has been identified. Supplementary file1 (DOCX 216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A., Priji, S., Gangaprasad, A. et al. Organic extract mediated synthesis of stable methylammonium lead bromide nanoparticles. J Mater Sci: Mater Electron 33, 17978–17987 (2022). https://doi.org/10.1007/s10854-022-08659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08659-y

Navigation