Skip to main content
Log in

High-responsivity (Ga2Ge)100−x(Ga3Sb2)x (x = 15, 30, 45, 60) photodetection sensor for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electromagnetic signal detection for applications such as astronomy, product quality monitoring, health, and necessitates systems that are very responsive and wavelength selective. High quantum efficiencies and high responsibility have been demonstrated in photodetectors based on Ge–Ga–Sb, primarily in the visible range. The photoelectric responses of new low-voltage, high-responsivity, solution-processed, flexible photodetectors for optoelectronic applications are examined for the first time. This is accomplished by using the melt-quenching procedure to synthesize Ge–Ga–Sb compound and putting it on a silica glass substrate using the spin coating method. The films were investigated in the context of an electrical photodetection sensor based on impedance. Excellent responsivity, particular detectivity, external quantum efficiency, and response time were all demonstrated by the produced device. The findings show that Ge–Ga–Sb has good optoelectronic capabilities and might be used in applications with low optical intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw data are available at the corresponding author and can be presented for reasonable requests.

References

  1. I. Sharma, A.S. Hassanien, Effect of Ge-addition on physical and optical properties of chalcogenide Pb10Se90−xGex bulk glasses and thin films. J. Non-Cryst. Sol. 548, 120326–120333 (2020)

    Article  CAS  Google Scholar 

  2. A.S. Hassanien, I. Sharma, K.A. Aly, Linear and nonlinear optical studies of thermally evaporated chalcogenide a-Pb–Se–Ge thin films. Physica B 613, 412985 (2021)

    Article  CAS  Google Scholar 

  3. P.K. Singh, D.K. Dwivedi, Chalcogenide glass: fabrication techniques, properties and applications. Ferroelectrics 520(1), 256–273 (2017)

    Article  CAS  Google Scholar 

  4. P.K. Singh, S.K. Tripathi, D.K. Dwivedi, Effect of thermal annealing on structural and optical properties of In doped Ge–Se–Te chalcogenide thin films. Mater. Sci. Pol. 37(4), 554–562 (2019)

    Article  CAS  Google Scholar 

  5. A.S. Hassanien, I.M. El Radaf, A.A. Akl, Physical and optical studies of the novel non-crystalline CuxGe20xSe40Te40 bulk glasses and thin films. J. Alloys Compd. 849, 156718–156725 (2020)

    Article  CAS  Google Scholar 

  6. R. Tintu, V.P.N. Nampoori, P. Radhakrishnan, S. Thomas, Nonlinear optical studies on nanocolloidal Ga–Sb–Ge–Se chalcogenide glass. J. Appl. Phys. 108(7), 073525 (2010)

    Article  Google Scholar 

  7. Z.B. Li, C.G. Lin, G.S. Qu, Q.H. Nie, T.F. Xu, S.X. Dai, Phase separation in non stoichiometry Ge–Sb–S chalcogenide glasses. J. Am. Ceram. Soc. 97, 793–797 (2014)

    Article  CAS  Google Scholar 

  8. C.G. Lin, Z.B. Li, S.X. Gu, H.Z. Tao, S.X. Dai, Q.H. Nie, Laser-induced phase transformation in chalcogenide glasses investigated by micro-Raman spectrometer. J. Wuhan Univ. Technol. 29, 9–12 (2014)

    Article  CAS  Google Scholar 

  9. D. Kaur, M. Kumar, A strategic review on gallium oxide based deep-ultraviolet photodetectors: recent progress and future prospects. Adv. Opt. Mater. 9(9), 2002160 (2021)

    Article  CAS  Google Scholar 

  10. A. Singh, S. Sikarwar, A. Verma, B.C. Yadav, The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review. Sens. Actuators A Phys. 332, 113127 (2021)

    Article  CAS  Google Scholar 

  11. J. Ari, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, L. Quetel, K. Michel, A. Braud, P. Camy, R. Chahal, B. Bureau, Rare-earth-doped chalcogenide glasses for mid-IR gas sensor applications, in Optical Components and Materials XIV, International Society for Optics and Photonics. (SPIE, Bellingham, 2017)

    Google Scholar 

  12. K. Arora, N. Kumar, P. Vashishtha, G. Gupta, M. Kumar, Investigating the role of oxygen and related defects in the self-biased and moderate-biased performance of β-Ga2O3 solar-blind photodetectors. J. Phys. D Appl. Phys. 54(16), 165102 (2021)

    Article  CAS  Google Scholar 

  13. R.K. Tripathi, O.S. Panwar, I. Rawal, C.K. Dixit, A. Verma, P. Chaudhary, A.K. Srivastava, B.C. Yadav, Study of variable range hopping conduction mechanism in nanocrystalline carbon thin films deposited by modified anodic jet carbon arc technique: application to light-dependent resistors. J. Mater. Sci. Mater. Electron. 32(2), 2535–2546 (2021)

    Article  CAS  Google Scholar 

  14. J. Chen, W. Ouyang, W. Yang, J.H. He, X. Fang, Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv. Funct. Mater. 30(16), 1909909 (2020)

    Article  CAS  Google Scholar 

  15. C. Zhou, S. Raju, B. Li, M. Chan, Y. Chai, C.Y. Yang, Self-driven metal–semiconductor–metal WSe2 photodetector with asymmetric contact geometries. Adv. Funct. Mater. 28(45), 1802954 (2018)

    Article  Google Scholar 

  16. L. Shi, K. Chen, A. Zhai, G. Li, M. Fan, Y. Hao, F. Zhu, H. Zhang, Y. Cui, Status and outlook of metal-inorganic semiconductor–metal photodetectors. Laser Photonics Rev. 15(1), 2000401 (2021)

    Article  CAS  Google Scholar 

  17. R. Wadhwa, A.V. Agrawal, D. Kushavah, A. Mushtaq, S. Pal, M. Kumar, Investigation of charge transport and band alignment of MoS2–ReS2 heterointerface for high performance and self-driven broadband photodetection. Appl. Surf. Sci. 569, 150949 (2021)

    Article  CAS  Google Scholar 

  18. W. Chandra, L.K. Ang, K.L. Pey, C.M. Ng, Two-dimensional analytical Mott-Gurney law for a trap-filled solid. Appl. Phys. Lett. 90(15), 153505 (2007)

    Article  Google Scholar 

  19. A. Verma, P. Chaudhary, R.K. Tripathi, B.C. Yadav, Transient photodetection studies on 2D ZnO nanostructures prepared by simple organic-solvent assisted route. Sens. Actuators A 321, 112600 (2021)

    Article  CAS  Google Scholar 

  20. Z. Zhao, M. Liu, K. Yang, C. Xu, Y. Guan, X. Ma, J. Wang, F. Zhang, Highly sensitive narrowband photomultiplication-type organic photodetectors prepared by transfer-printed technology. Adv. Funct. Mater. 31(43), 2106009 (2021)

    Article  CAS  Google Scholar 

  21. J. Kublitski, A. Fischer, S. Xing, L. Baisinger, E. Bittrich, D. Spoltore, J. Benduhn, K. Vandewal, K. Leo, Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. Nat. Commun. 12(1), 1–9 (2021)

    Article  Google Scholar 

  22. K. Arora, M. Kumar, Sputtered-growth of high-temperature seed-layer assisted β-Ga2O3 thin film on silicon-substrate for cost-effective solar-blind photodetector application. ECS J. Solid State Sci. Technol. 9(6), 065013 (2020)

    Article  CAS  Google Scholar 

  23. S. Li, D. Guo, P. Li, X. Wang, Y. Wang, Z. Yan, Z. Liu, Y. Zhi, Y. Huang, Z. Wu, Ultrasensitive, superhigh signal-to-noise ratio, self-powered solar-blind photodetector based on n-Ga2O3/p-CuSCN core-shell microwire heterojunction. ACS Appl. Mater. Interfaces. 11(38), 35105–35114 (2019)

    Article  CAS  Google Scholar 

  24. A.M. Elsayed, M. Rabia, M. Shaban, A.H. Aly, A.M. Ahmed, Preparation of hexagonal nanoporous Al2O3/TiO2/TiN as a novel photodetector with high efficiency. Sci. Rep. 11(1), 1–12 (2021)

    Article  Google Scholar 

  25. K. Hu, F. Teng, L. Zheng, P. Yu, Z. Zhang, H. Chen, X. Fang, Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed. Laser Photonics Rev. 11(1), 1600257 (2017)

    Article  Google Scholar 

  26. Y. Liu, C. Zhao, J. Li, S. Zhao, X. Xu, H. Fu, C. Yu, F. Kang, G. Wei, Highly sensitive CuInS2/ZnS core–shell quantum dot photodetectors. ACS Appl. Electron. Mater. 3(3), 1236–1243 (2021)

    Article  CAS  Google Scholar 

  27. M. Alamri, M. Gong, B. Cook, R. Goul, J.Z. Wu, Plasmonic WS2 nanodiscs/graphene van der Waals heterostructure photodetectors. ACS Appl. Mater. Interfaces. 11(36), 33390–33398 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Dr Pravin Kumar Singh, Institute of Advanced Materials, IAAM Sweden for his expertise and assistance throughout all aspects of this study and for help in writing the manuscript.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution to the study.

Corresponding author

Correspondence to D. K. Dwivedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, R., Lohia, P., Dwivedi, D.K. et al. High-responsivity (Ga2Ge)100−x(Ga3Sb2)x (x = 15, 30, 45, 60) photodetection sensor for optoelectronic applications. J Mater Sci: Mater Electron 33, 17939–17948 (2022). https://doi.org/10.1007/s10854-022-08656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08656-1

Navigation