Skip to main content

Advertisement

Log in

Synthesis and characterization of highly conductive poly(indole-4-aminoquinaldine) copolymer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Conductive polymers with good conductivity and large surface area are used as N-precursor materials for N-doped carbon-based catalysts and increase the catalytic activity of the electrode. Therefore, synthesis of the novel highly conductive polymer is an essential issue. This study reports that the synthesis of a novel copolymer is called poly(indole-4-aminoquinaldine) successfully achieved both chemically and electrochemically. The effect of scan rate, scan number, monomer concentration, and solvent on the polymerization process was investigated, and hereby the optimum synthesis conditions for the copolymer were determined. Under optimum conditions, the polyindole was also synthesized electrochemically and properties of polyindole compared to poly(indole-4-aminoquinaldine). The electrochemical characterization was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrical conductivity of the poly(indole-4-aminoquinaldine) and polyindole was measured using a four-point probe technique as 6 S/cm and 1 × 10–2 S/cm, respectively. Additionally, bandgap of copolymer and polyindole was found to be 3.10 and 3.18 eV, respectively. The structural, thermal, and morphological analysis of poly(indole-4-aminoquinaldine) and polyindole were carried out with UV–Vis Spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), elemental mapping, scan electron microscopy (SEM), and energy-dispersive X-ray analyzer (EDX) techniques. The novel copolymer synthesized in this study has high thermal stability and high electrochemical activity as well as high conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. S.J. Kwon, T.H. Han, T.Y. Ko, N. Li, Y. Kim, B. Kim, D.J. Yang, S.H.Y. Hong, Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-04385-4

    Article  Google Scholar 

  2. C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, ACS Nano (2011). https://doi.org/10.1021/nn200025p

    Article  Google Scholar 

  3. A. Ait, E. Fakir, Z. Anfar, M. Enneiymy, A. Jada, N. El, Appl. Catal. B (2022). https://doi.org/10.1016/j.apcatb.2021.120732

    Article  Google Scholar 

  4. J. Wu, T. Sharifi, Y. Gao, T. Zhang, P.M. Ajayan, Adv. Mater. (2019). https://doi.org/10.1002/adma.201804257

    Article  Google Scholar 

  5. H. Ning, Q. Mao, W. Wang, Z. Yang, X. Wang, Q. Zhao, Y. Song, M. Wu, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.01.142

    Article  Google Scholar 

  6. U. Legrand, R. Boudreault, J.L. Meunier, Electrochim. Acta. (2019). https://doi.org/10.1016/j.electacta.2019.06.074

    Article  Google Scholar 

  7. Y. Deng, Y. Xie, K. Zou, X. Ji, J. Mater. Chem. A (2015). https://doi.org/10.1039/c5ta08620e

    Article  Google Scholar 

  8. X. Li, Y. Bai, M. Wang, G. Wang, Y. Ma, L. Li, B. Xiao, J. Zheng, Sustain Energy Fuels (2019). https://doi.org/10.1039/c9se00027e

    Article  Google Scholar 

  9. S. Yuan, W. Chen, L. Zhang, Z. Liu, J. Liu, T. Liu, G. Li, Q. Wang, Small (2019). https://doi.org/10.1002/smll.201903311

    Article  Google Scholar 

  10. J. Bao, J. Wang, Y. Zhou, Y. Hu, Z. Zhang, T. Li, Y. Xue, C. Guo, Y. Zhang, Catal. Sci. Technol. (2019). https://doi.org/10.1039/c9cy01182j

    Article  Google Scholar 

  11. Z.J. Lu, S.J. Bao, Y.T. Gou, C.J. Cai, C.C. Ji, M.W. Xu, J. Song, R. Wang, RSC Adv. (2013). https://doi.org/10.1039/c3ra22161j

    Article  Google Scholar 

  12. M. Ren, Z. Jia, Z. Tian, D. Lopez, J. Cai, M.M. Titirici, A.B. Jorge, ChemElectroChem (2018). https://doi.org/10.1002/celc.201800603

    Article  Google Scholar 

  13. M. Du, J. Chang, F. Yang, L. Shi, L. Gao, RSC Adv. (2014). https://doi.org/10.1039/c4ra05544f

    Article  Google Scholar 

  14. C.K. Maity, G. Hatui, K. Verma, G. Udayabhanu, D.D. Pathak, G.C. Nayak, Vacuum (2018). https://doi.org/10.1016/j.vacuum.2018.08.019

    Article  Google Scholar 

  15. A.K. Mageed, R.A.B. Dayang, A. Salmiaton, S. Izhar, A. Razak, H.M. Yusoff, F.M. Yasin, S. Kamarudin (2016 ) http://www.ripublication.com.

  16. D. Minta, Z. González, P. Wiench, S. Gryglewicz, G. Gryglewicz, Sensors (Switzerland). (2020). https://doi.org/10.3390/s20164427

    Article  Google Scholar 

  17. J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, Polymers (Basel) (2020). https://doi.org/10.3390/polym12102382

    Article  Google Scholar 

  18. G. Qi, L. Huang, Wang, Chem. Commun. 48, 8246–8248 (2012). https://doi.org/10.1039/C2CC33889K

    Article  CAS  Google Scholar 

  19. T. Zhu, J. Zhou, Z. Li, S. Li, W. Si, S. Zhuo, J. Mater. Chem. A (2014). https://doi.org/10.1039/c4ta01465k

    Article  Google Scholar 

  20. A.A. Ramachandran, J.S. Nair, Y.S. Karunakaran, ACS Sustain. Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.8b05996

    Article  Google Scholar 

  21. K. Cong, M. Radtke, S. Stumpf, B. Schröter, D.G.G. McMillan, M. Rettenmayr, A. Ignaszak, Mater. Renew. Sustain. Energy (2015). https://doi.org/10.1007/s40243-015-0046-9

    Article  Google Scholar 

  22. M. Sevilla, P. Valle-Vigõn, A.B. Fuertes, Adv. Funct. Mater. (2011). https://doi.org/10.1002/adfm.201100291

    Article  Google Scholar 

  23. A. Ait El Fakir, Z. Anfar, A. Amedlous, M. Zbair, Z. Hafidi, M. El Achouri, A. Jada, N. El Alem, Appl. Catal. B (2021). https://doi.org/10.1016/j.apcatb.2021.119948

    Article  Google Scholar 

  24. J. Wu, W. Zhou, F. Jiang, Y. Chang, Q. Zhou, D. Li, G. Ye, C. Li, G. Nie, J. Xu, T. Li, Y. Du, A.C.S. Appl, Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b00722

    Article  Google Scholar 

  25. I. Marriam, Y. Wang, M. Tebyetekerwa, Energy Storage Mater. (2020). https://doi.org/10.1016/j.ensm.2020.08.010

    Article  Google Scholar 

  26. A.P. Syed, R. Saraswathi, Org. Electron. (2004). https://doi.org/10.1016/j.orgel.2004.10.002

    Article  Google Scholar 

  27. S.A. Yerişkin, H.I. Unal, B. Sarı, J. Appl. Polym. Sci. (2011). https://doi.org/10.1002/app.33148

    Article  Google Scholar 

  28. S. Podder, S. Paul, P. Basak, B. Xie, N.J. Fullwood, S.J. Baldock, Y. Yang, J.G. Hardy, C.K. Ghosh, RSC Adv. (2020). https://doi.org/10.1039/d0ra01129k

    Article  Google Scholar 

  29. N.K. Guimard, N. Gomez, C.E. Schmidt, Prog. Polym. Sci. (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.012

    Article  Google Scholar 

  30. A. Lendlein, M. Rehahn, M.R. Buchmeiser, R. Haag, Macromol. Rapid Commun. (2010). https://doi.org/10.1002/marc.201000426

    Article  Google Scholar 

  31. İ Gergin, A.T. Gökçeören, A.S. Sarac, Fibers Polym. (2015). https://doi.org/10.1007/s12221-015-5144-x

    Article  Google Scholar 

  32. K. Phasuksom, W. Prissanaroon-Ouajai, A. Sirivat, Sensors Actuators B (2018). https://doi.org/10.1016/j.snb.2018.02.088

    Article  Google Scholar 

  33. M. Düdükcü, F. Köleli, Prog Org Coatings (2006). https://doi.org/10.1016/j.porgcoat.2006.01.004

    Article  Google Scholar 

  34. T. Tüken, B. Yazici, M. Erbil, Surf. Coatings Technol. (2006). https://doi.org/10.1016/j.surfcoat.2005.04.023

    Article  Google Scholar 

  35. T. Tüken, M. Düdükçü, B. Yazici, M. Erbil, Prog Org. Coatings. (2004). https://doi.org/10.1016/j.porgcoat.2004.03.004

    Article  Google Scholar 

  36. A. Verma, R.B. Choudhary, Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2020.104948

    Article  Google Scholar 

  37. E. Dogan, E. Ozkazanc, H. Ozkazanc, Synth. Met. (2019). https://doi.org/10.1016/j.synthmet.2019.116154

    Article  Google Scholar 

  38. Y. Wang, T. Wang, T. Wang, J. Zhang, J. Chen, R. Yang, L. Ruan, B. Wang, Polym. Eng. Sci. (2019). https://doi.org/10.1002/pen.24839

    Article  Google Scholar 

  39. Y. Wang, H. Yu, Y. Li, T. Wang, T. Xu, J. Chen, Z. Fan, Y. Wang, B. Wang, Polymers (Basel) (2019). https://doi.org/10.3390/polym11030546

    Article  Google Scholar 

  40. G. Qi, L. Huang, H. Wang, Chem. Commun. (2012). https://doi.org/10.1039/c2cc33889k

    Article  Google Scholar 

  41. K. Phasuksom, A. Sirivat, Synth. Met. (2016). https://doi.org/10.1016/j.synthmet.2016.05.033

    Article  Google Scholar 

  42. V. Arjunan, I. Saravanan, P. Ravindran, S. Mohan, Spectrochim. Acta Part A (2009). https://doi.org/10.1016/j.saa.2009.06.028

    Article  Google Scholar 

  43. V. Krishnakumar, R.J. Xavier, Chem. Phys. (2005). https://doi.org/10.1016/j.chemphys.2004.11.016

    Article  Google Scholar 

  44. D. Caldwell, W.A. Cox, P.F. D’Arcy, L.R. Rowe, J. Pharm. Pharmacol. (1961). https://doi.org/10.1111/j.2042-7158.1961.tb11869.x

    Article  Google Scholar 

  45. M. Düdükcü, G. Avcı, Res. Chem. Intermed. (2015). https://doi.org/10.1007/s11164-014-1572-2

    Article  Google Scholar 

  46. M.A. El-Attar, I.M. Ismail, M.M.J. Ghoneim, Braz. Chem. Soc. (2012). https://doi.org/10.1590/S0103-50532012005000013

    Article  Google Scholar 

  47. A.A. Hathoot, M. Abdel-Kader, M. Abdel-Azzem, Int J Electrochem. Sci. 4, 208–222 (2009)

    CAS  Google Scholar 

  48. M.A. Azzem, Eur. Polym. J. (1993). https://doi.org/10.1016/0014-3057(94)00123-5

    Article  Google Scholar 

  49. L. Xu, D. Li, W. Zhou, Y. Ding, Y. Wu, J. Xu, X. Duan, Arab. J. Chem. (2020). https://doi.org/10.1016/j.arabjc.2020.05.006

    Article  Google Scholar 

  50. S. Mozaffari, J. Behdani, S.M.B. Ghorashi, Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03833-4

    Article  Google Scholar 

  51. G. Shanmugam, S. Brahadeeswaran, Spectrochim. Acta Part A (2012). https://doi.org/10.1016/j.saa.2012.04.100

    Article  Google Scholar 

  52. H.K. Rasheed, A.A. Kareem, J. Opt. Commun. (2021). https://doi.org/10.1515/joc-2018-0024

    Article  Google Scholar 

  53. C.J. Verma, R.K. Pandey, R. Prakash, Mater. Sci. Eng. B (2018). https://doi.org/10.1016/j.mseb.2017.10.015

    Article  Google Scholar 

  54. L. Joshi, A.K. Singh, R. Prakash, Mater. Chem. Phys. (2012). https://doi.org/10.1016/j.matchemphys.2012.04.026

    Article  Google Scholar 

  55. R.X. Wang, Y.J. Fan, L. Wang, L.N. Wu, S.N. Sun, S.G. Sun, J. Power Sources (2015). https://doi.org/10.1016/j.jpowsour.2015.03.181

    Article  Google Scholar 

  56. N. Puviarasan, V. Arjunan, S. Mohan, Turk. J. Chem. 28(1), 53–66 (2004)

    CAS  Google Scholar 

  57. J. Arjomandi, H. Soleimani, M.H. Parvin, E. Azizi, Polym. Compos. (2019). https://doi.org/10.1002/pc.24674

    Article  Google Scholar 

  58. P. Chattıse, K. Handore, A. Horne, K. Mohıte, A. Chaskar, S. Dallavalle, V. Chabukswar, J. Chem. Sci. (2016). https://doi.org/10.1007/s12039-016-1040-1

    Article  Google Scholar 

  59. A. Şelte, B. Özkal, Proc. Est. Acad. Sci. (2019). https://doi.org/10.3176/proc.2019.1.02

    Article  Google Scholar 

  60. M. Warczak, M. Osial, M. Berggren, E.D. Glowacki, J. Electrochem. Soc. (2020). https://doi.org/10.1149/1945-7111/ab88bb

    Article  Google Scholar 

  61. R. Yue, F. Jiang, Y. Du, J. Xu, P. Yang, Electrochim. Acta. (2012). https://doi.org/10.1016/j.electacta.2012.05.150

    Article  Google Scholar 

  62. B. Gupta, A.K. Singh, A.A. Melvin, R. Prakash, Solid State Sci. (2014). https://doi.org/10.1016/j.solidstatesciences.2014.05.015

    Article  Google Scholar 

  63. M.B. Camarada, P. Jaque, F.R. Díaz, M.A. Del-Valle, J. Polym. Sci. Part B (2011). https://doi.org/10.1002/polb.22360

    Article  Google Scholar 

  64. A.N. Grace, S.Y. Choi, M. Vinoba, M. Bhagiyalakshmi, D.H. Chu, Y. Yoon, S.C. Nam, S.K. Jeong, Appl. Energy. (2014). https://doi.org/10.1016/j.apenergy.2014.01.022

    Article  Google Scholar 

  65. H.-M. Miao, H.-L. Zhang, J.-K. Xu, C.-L. Fan, B. Dong, L.-Q. Zeng, F. Zhao, Chin. J. Chem. (2008). https://doi.org/10.1002/app.21532

    Article  Google Scholar 

  66. D. Billaud, E.B. Maarouf, E. Hannecart, Chemical oxidation and polymerization of indole. Synth. Met. 69, 571–572 (1995). https://doi.org/10.1016/0379-6779(94)02573-H

    Article  CAS  Google Scholar 

  67. K.R.L. Castagno, V. Dalmoro, D.S. Azambuja, Mater. Chem. Phys. (2011). https://doi.org/10.1016/j.matchemphys.2011.07.052

    Article  Google Scholar 

  68. T. Li, Y. Zhou, Z. Dou, L. Ding, S. Dong, N. Liu, Z. Qin, Electrochim. Acta. (2017). https://doi.org/10.1016/j.electacta.2017.05.087

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Mersin University research fund [2020-TP2-4009] for their financial support.

Funding

Funding was provided by Mersin Üniversitesi (Grant No. 2020-TP2-4009).

Author information

Authors and Affiliations

Authors

Contributions

RSK: Writing—Original draft preparation, Experimental work. TA: Experimental work. MD: Reviewing and editing, Supervision.

Corresponding author

Correspondence to Rukan Suna Karatekin.

Ethics declarations

Conflict of interest

There are no conflicts of interest associated with this publication, and there has been no financial support for this work that could have influenced its outcome.

Research involving human and animal rights

The authors emphasized that their study is not about human and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1512 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aşkın, T., Suna Karatekin, R. & Düdükcü, M. Synthesis and characterization of highly conductive poly(indole-4-aminoquinaldine) copolymer. J Mater Sci: Mater Electron 33, 17923–17938 (2022). https://doi.org/10.1007/s10854-022-08655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08655-2

Navigation