Skip to main content
Log in

Pure red luminescence and concentration-dependent tunable emission color from europium-doped zinc sulfide nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano-sized Eu3+-doped ZnS particles were prepared by chemical precipitation method using polyethylene glycol as capping agent. The structural and morphological studies of ZnS:Eu3+ nanoparticles were carried out using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD results show that ZnS:Eu3+ nanoparticles have a cubic structure for all Eu3+ concentrations. Dependence of doping concentration on the photoluminescence (PL) of ZnS:Eu3+ nanophosphor was studied for excitations at 395 nm and 465 nm. At 395-nm excitation, emission colors of ZnS:Eu3+ nanophosphor lie in blue, green, yellow, and red regions of chromaticity diagram for different doping concentrations. But for all doping concentrations we got red emission when the excitation wavelength was 465 nm and the color purity was 92% for 0.03 M doped sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw/processed data of this work will be made available on request.

References

  1. R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Phys. Rev. Lett. 72, 416–419 (1994)

    Article  CAS  Google Scholar 

  2. F. Zhang, J. Xie, W. Zhang, Y. Wang, Y. Huang, Y. Tao, J. Mater. Chem. C 5, 872 (2017)

    Article  CAS  Google Scholar 

  3. Y. Liu, J. Zhang, Ch. Zhang, J. Jiang, H. Jiang, J. Phys. Chem. C 120, 2362 (2016)

    Article  CAS  Google Scholar 

  4. G. Varughese, Mater. Today Proc. 3, 282–288 (2016)

    Article  Google Scholar 

  5. A. Fkiri, A. Mezni, L.S. Smiri, J. Inorg. Organomet. Polym. Mater. 28, 27–34 (2018)

    Article  CAS  Google Scholar 

  6. R. Viswanatha, D.M. Battaglia, M.E. Curtis, T.D. Mishima, M.B. Johnson, X.G. Peng, Nano Res. 1, 138–144 (2008)

    Article  CAS  Google Scholar 

  7. W.Z. Wu, H.A. Ye, X.L. Ruan, Nanotechnology 21, 265704 (2010)

    Article  Google Scholar 

  8. K. Ashwini, C. Pandurangappa, K. Avinash, S. Srinivasan, E. Stefanakos, J. Lumin. 221, 117097 (2020)

    Article  CAS  Google Scholar 

  9. C.-H. Lu, B. Bhattacharjee, S.-Y. Chen, J. Alloys Compd. 475, 116–121 (2009)

    Article  CAS  Google Scholar 

  10. M. Kuppayee, G.K. Vanathi Nachiyar, V. Ramasamy, Mater. Sci. Semicond. Process. 15, 136–144 (2012)

    Article  CAS  Google Scholar 

  11. J. Planelles Arago, B. Julian Lopez, E. Cordoncillo, P. Escribano, F. Pelle, B. Viana, C. Sanchez, J. Mater. Chem. 18, 5193–5199 (2008)

    Article  CAS  Google Scholar 

  12. S. Ramu, R.P. Vijayalakshmi, J. Supercond. Nov. Magn. 30, 1921–1925 (2017)

    Article  CAS  Google Scholar 

  13. D.J. Vidya Raj, C. Justin Raj, S. Jerome Das, Superlattices Microstruct. 85, 274–281 (2015)

    Article  Google Scholar 

  14. K. Binnemans, Coord. Chem. Rev. 295, 1–45 (2015)

    Article  CAS  Google Scholar 

  15. L. Sun, C. Yan, C. Liu, C. Liao, D. Li, J. Yu, J. Alloys Compd. 275–277, 234–237 (1998)

    Article  Google Scholar 

  16. I. Ahemen, D.K. De, O.C. Melludu, Adv. Sci. Eng. Med. 5(11), 1188 (2013)

    Article  CAS  Google Scholar 

  17. B. Poornaprakash, S.V. Prabhakar Vattikuti, K. Subramanyam, R. Cheruku, K.C. Devarayapalli, Y.L. Kim, V.R.M. Reddy, H. Park, M.S.P. Reddy, Ceram. Int. 47, 28976–28984 (2021)

    Article  CAS  Google Scholar 

  18. H. Yang, L. Yu, L. Shen, L. Wang, Mater. Lett. 58, 1172–1175 (2004)

    Article  CAS  Google Scholar 

  19. K. Ashwini, Yashaswini, C. Pandurangappa, Opt. Mater. 37, 537–542 (2014)

  20. G.S. Lotey, Z. Jindal, V. Singhi, N.K. Verma, Mater. Sci. Semicond. Process. 16, 2044–2050 (2013)

    Article  Google Scholar 

  21. S.C. Qu, W.H. Zhou, F.Q. Liu, N.F. Chen, Z.G. Wang, Appl. Phys. Lett. 80, 3605 (2002)

    Article  CAS  Google Scholar 

  22. L.S. Archana, N.R. Deepthi, Mater. Today Proc. 41, 461–467 (2021)

    Article  CAS  Google Scholar 

  23. M.J. Rivera Medina, A. Carrillo Verduzco, A. Rodriguez Gomez, M.A. Loi, J.C. Alonso Huitron, Mater. Chem. Phys. 270, 124866 (2021)

    Article  CAS  Google Scholar 

  24. K.R. Bindu, A.I. Martinez, P. Vasudevan, N.V. Unnikrishnan, E.I. Anila, Physica E 46, 21–24 (2012)

    Article  CAS  Google Scholar 

  25. K.R. Bindu, E.I. Anila, J. Fluoresc. 25, 795–801 (2015)

    Article  CAS  Google Scholar 

  26. A.R. Polu, R. Kumar, E-J. Chem. 8(1), 347–353 (2011)

    Article  CAS  Google Scholar 

  27. T.A. Safeera, N. Johns, E.I. Anila, Opt. Mater. 58, 32–37 (2016)

    Article  CAS  Google Scholar 

  28. T.A. Safeera, N. Johns, E.I. Anila, A.I. Martinezc, P.V. Sreenivas, R. Reshmi, M. Sudhanshu, M.K. Jayaraj, J. Anal. Appl. Pyrolysis 115, 96–102 (2015)

    Article  CAS  Google Scholar 

  29. J. Manam, V. Chatterjee, S. Das, A. Choubey, S.K. Sharma, J. Lumin. 130, 292–297 (2010)

    Article  CAS  Google Scholar 

  30. L. Wang, X. Xu, X. Yuan, J. Lumin. 130, 137–140 (2010)

    Article  CAS  Google Scholar 

  31. G.S. Lotey, Z. Jindal, V. Singh, N.K. Verma, Mater. Sci. Semicond. Process. 16, 2044–2050 (2013)

    Article  Google Scholar 

  32. J.E. Lowther, J. Phys. C 7, 4393–4402 (1974)

    Article  CAS  Google Scholar 

  33. B. Chang, Z. Wang, Adv. Funct. Mater. 15, 1883–1890 (2005)

    Article  Google Scholar 

  34. T.A. Safeera, E.I. Anila, J. Lumin. 205, 277–281 (2019)

    Article  CAS  Google Scholar 

  35. D.L. Dexter, J. Chem. Phys. 21, 836–850 (1953)

    Article  CAS  Google Scholar 

  36. D.L. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063–1070 (1954)

    Article  CAS  Google Scholar 

  37. E.F. Schubert, Light Emitting Diodes, 2nd edn. (Cambridge University Press, New York, 2006)

    Book  Google Scholar 

  38. M. Dejneka, E. Snitzer, R.E. Riman, J. Lumin. 65, 227 (1995)

    Article  CAS  Google Scholar 

  39. K. Ebisawa, T. Okuno, K. Abe, Jpn. J. Appl. Phys. 47, 7236–7238 (2008)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the conception, design and analysis. Material preparation and data collection were done by KRB. Original manuscript was prepared by KRB and TAS. Supervision of the work and review and editing of manuscript were done by EIA.

Corresponding author

Correspondence to E. I. Anila.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindu, K.R., Safeera, T.A. & Anila, E.I. Pure red luminescence and concentration-dependent tunable emission color from europium-doped zinc sulfide nanoparticles. J Mater Sci: Mater Electron 33, 17793–17801 (2022). https://doi.org/10.1007/s10854-022-08644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08644-5

Navigation