Skip to main content

Advertisement

Log in

Surface coatings of zinc oxide–tantalum pentoxide on multicrystalline Si solar cell as effective light harvester

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One of the key elements to enhance the performance of solar cells was antireflective surface coatings. It can be employed through different deposition techniques such as spin coating, dip coating, blade coating, etc., In this research work, the coating materials such as ZnO, Ta2O5 and ZnO–Ta2O5 blends were coated over silicon solar cells through electrospraying technique. The performance of coated solar cells were evaluated using different characterization techniques. At the coating time of 90 min and input voltage supply of 17 kV, almost uniform thin films were attained. This was confirmed through FESEM and AFM analysis. The transmittance and power output characteristics of coated glass slides and Si solar cells were examined through UV–Vis spectroscopy and IV source meter. In comparison with other solar cells, the ZnO–Ta2O5 blend (H3) coated cell exhibit uniform layer deposition and minimal light reflectance of 5%. The maximum power conversion efficiency was achieved for H3 solar cell of 17.7% (direct sunlight) and 19.6% (neodymium light source), due to increased transmittance of photons reaching the depletion region. The electrical resistivity of H3 solar cell was noted as 3.57 × 10−3 Ω cm using four probe method, which was lesser than other solar cells. From the obtained experimental outcomes, ZnO–Ta2O5 blend coated solar cell reveal the maximum performance than other coated and uncoated solar cells. Hence, ZnO–Ta2O5 blends were found to be better antireflective material for attaining maximum output performance of solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renew. Sustain. Energy Rev. 39, 748 (2014)

    Article  Google Scholar 

  2. R. Gross, M. Leach, A. Bauen, Environ. Int. 29, 1 (2003)

    Article  Google Scholar 

  3. Y. Xu, J. Li, Q. Tan, A.L. Peters, C. Yang, Waste Manage. 75, 450 (2018)

    Article  CAS  Google Scholar 

  4. J. Rath, Sol .Energy Mater. Sol. C 76, 4 (2003)

    Article  Google Scholar 

  5. L.C. Hirst, N.J. Ekins-Daukes, Prog. Photovolt.: Res. Appl. 19, 3 (2011)

    Article  Google Scholar 

  6. D. Chen, Sol .Energy Mater. Sol. C 68, 313 (2001)

    Article  CAS  Google Scholar 

  7. C.-H. Sun, P. Jiang, B. Jiang, Appl. Phys. Lett. 92, 6 (2008)

    Google Scholar 

  8. W.L. Min, B. Jiang, P. Jiang, Adv. Mater. 20, 20 (2008)

    Google Scholar 

  9. B. Hussain, A. Ebong, I. Ferguson, Sol .Energy Mater. Sol. C 139, 95 (2015)

    Article  CAS  Google Scholar 

  10. G. Velu Kaliyannan, S.V. Palanisamy, R. Rathanasamy, M. Palanisamy, S.K. Palaniappan, M. Chinnasamy, J. Mater. Sci.: Mater. Electron. 31, 3 (2020)

    Google Scholar 

  11. M.F. Bhopal, D. won Lee, M.A. Rehman, Y. Seo, S.H. Lee, Mater. Sci. Semicond. Proc. 86, 146 (2018)

    Article  CAS  Google Scholar 

  12. S. Santhosh, R. Rajasekar, V.K. Gobinath, C. Moganapriya, S. Arun Kumar, A. Manju Sri, Silicon (2021). https://doi.org/10.1007/s12633-021-01385-w

    Article  Google Scholar 

  13. C. Tao, L. Zhang, Colloids Surf. A 585, 124045 (2020)

    Article  CAS  Google Scholar 

  14. W. Dou, P. Wang, D. Zhang, J. Yu, Mater. Lett. 167, 69 (2016)

    Article  CAS  Google Scholar 

  15. M. Chinnasamy, R. Rathanasamy, S. Sivaraj, G. Velu Kaliyannan, M.S. Anbupalani, S.K. Jaganathan, J. Electron. Mater. 51, 2833 (2022)

    Article  CAS  Google Scholar 

  16. L. Dobrzański, M. Szindler, A. Drygała, M. Szindler, Open Phys. 12, 9 (2014)

    Article  Google Scholar 

  17. J.-Y. Chen, W.-L. Chang, C.-K. Huang, K.W. Sun, Opt. Express 19, 15 (2011)

    CAS  Google Scholar 

  18. T. Dey, D. Naughton, J. Sol-Gel Sci. Technol. 77, 1 (2016)

    Article  CAS  Google Scholar 

  19. K.H. Nielsen, D.K. Orzol, S. Koynov, S. Carney, E. Hultstein, L. Wondraczek, Sol. Energy Mat. Sol. C 128, 283 (2014)

    Article  CAS  Google Scholar 

  20. T. Sertel, Y. Ozen, V. Baran, S. Ozcelik, J. Alloy Compd. 806, 439 (2019)

    Article  CAS  Google Scholar 

  21. P. Aurang, O. Demircioglu, F. Es, R. Turan, H.E. Unalan, J. Am. Ceram. Soc. 96, 4 (2013)

    Article  Google Scholar 

  22. V.K. Gobinath, R. Rajasekar, S. Santhosh, C. Moganapriya, A.M. Sri, S. Jaganathan, Silicon (2022). https://doi.org/10.1007/s12633-022-01714-7

    Article  Google Scholar 

  23. G. Velu Kaliyannan, S.V. Palanisamy, R. Rathanasamy, M. Palanisamy, N. Nagarajan, S. Sivaraj, M.S. Anbupalani, J. Electron. Mater. 49, 10 (2020)

    Article  Google Scholar 

  24. G. San Vicente, A. Morales, M. Gutierrez, Thin Solid Films 391, 1 (2001)

    Article  Google Scholar 

  25. K. Askar, B.M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, B. Jiang, Colloids Surf. A 439, 84 (2013)

    Article  CAS  Google Scholar 

  26. V. Uvarov, I. Popov, Mater. Charact. 58, 10 (2007)

    Article  Google Scholar 

  27. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 9 (2011)

    Article  Google Scholar 

  28. J.I. Langford, A. Wilson, J. Appl. Crystallogr. 11, 2 (1978)

    Google Scholar 

  29. G. Velu Kaliyannan, S.V. Palanisamy, M. Palanisamy, M. Chinnasamy, S. Somasundaram, N. Nagarajan, R. Rathanasamy, Appl. Nanosci. 9, 7 (2019)

    Article  Google Scholar 

  30. G.V. Kaliyannan, S.V. Palanisamy, M. Palanisamy, M. Subramanian, P. Paramasivam, R. Rathanasamy, Mater. Sci. Pol. 37, 3 (2019)

    Article  Google Scholar 

  31. S. Oloomi, A. Saboonchi, A. Sedaghat, Int. J. Phys. Sci. 5, 5 (2010)

    Google Scholar 

  32. R.V.K. Chavali, J.R. Wilcox, B. Ray, J.L. Gray, M.A. Alam, IEEE J. Photovolt. 4, 3 (2014)

    Article  Google Scholar 

  33. Z. Zhang, Y. Zeng, C.-S. Jiang, Y. Huang, M. Liao, H. Tong, M. Al-Jassim, P. Gao, C. Shou, X. Zhou, Sol. Energy Mater. Sol. C 187, 113 (2018)

    Article  CAS  Google Scholar 

  34. R. Roesch, T. Faber, E.V. Hauff, T.M. Brown, M.L.-Cantu, H. Hoppe, Adv. Energy Mater. 5, 1501407 (2015)

    Article  Google Scholar 

  35. M.H. Kang, K. Ryu, A. Upadhyaya, A. Rohatgi, Prog. Photovolt.: Res. Appl. 19, 983 (2011)

    Article  CAS  Google Scholar 

  36. S. Santhosh, R. Rajasekar, V. Gobinath, C. Moganapriya, A.M. Sri, Chalcogenide Lett. 18, 327 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The author, Santhosh Sivaraj thank AICTE, New Delhi for selecting as full-time research scholar under AICTE Doctoral Fellowship (ADF) scheme in 2019 (Scholar ID-1-6382526181). Also thank Kongu Engineering College management for providing financial assistance. Additionally, author Gobinath Velu Kaliyannan thank Department of Science & Technology (DST), Government of India for the successful completion of this research work under the Teachers Associateship for Research Excellence (Ref No. TAR/2021/000173).

Author information

Authors and Affiliations

Authors

Contributions

SS: Problem identification, methodology and manuscript preparation. RR: Overall supervision. GVK: Assistance- experiments and characterization techniques. MP: Review and editing.

Corresponding author

Correspondence to Rajasekar Rathanasamy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest related to this research work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaraj, S., Rathanasamy, R., Velu Kaliyannan, G. et al. Surface coatings of zinc oxide–tantalum pentoxide on multicrystalline Si solar cell as effective light harvester. J Mater Sci: Mater Electron 33, 17699–17710 (2022). https://doi.org/10.1007/s10854-022-08633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08633-8

Navigation