Skip to main content
Log in

Enhancing efficiency of crystalline silicon solar cells by the mixture of downshifting CaAlSiN3:Eu2+ and Y2O3:Eu3+ phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Y2O3:Eu3+ (YO) phosphors which have high quantum yield in the range 200–280 nm are mixed with downshifting CaAlSiN3:Eu2+ (CASN) phosphors to improve CASN’s low quantum yield in the wavelength range below 280 nm. The luminescence downshifting ethyl vinyl acetate films with the mixture of YO and CASN phosphors are fabricated and then used to package crystalline silicon solar cells. Experimental results show that the introduction of YO phosphors not only improves the external quantum efficiency of the solar cells in the range below 280 nm but also leads to the better absorption of the light in the range 280–500 nm due to the scattering by YO phosphors. The conversion efficiency of the solar cells with the mixed phosphors can be enhanced from 19.60 to 19.98% after packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57). Prog. Photovolt. 29, 3–15 (2021). https://doi.org/10.1002/pip.3371

    Article  Google Scholar 

  2. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 1552–1576 (2017). https://doi.org/10.1038/nenergy.2017.32

    Article  CAS  Google Scholar 

  3. M. Machado, T. Baenas, N. Yurrita, Optical model for multilayer glazing systems: experimental validation through the analytical prediction of encapsulation-induced variation of PV packaged cells efficiency. Sol. Energy 135, 77–83 (2016). https://doi.org/10.1016/j.solener.2016.05.040

    Article  Google Scholar 

  4. K.R. McIntosh, G. Lau, J.N. Cotsell, K. Hanton, D.L. Bätzner, F. Bettiol, B.S. Richards, Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer. Prog. Photovoltaics 17, 191–197 (2009). https://doi.org/10.1002/pip.867

    Article  CAS  Google Scholar 

  5. E. Klampaftis, B.S. Richards, Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer. Prog. Photovoltaics 19, 345–351 (2011). https://doi.org/10.1002/pip.1019

    Article  CAS  Google Scholar 

  6. E. Klampaftis, D. Ross, K.R. McIntosh, B.S. Richards, Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Sol. Energy Mater. Sol. Cells 93, 1182–1194 (2009). https://doi.org/10.1016/j.solmat.2009.02.020

    Article  CAS  Google Scholar 

  7. X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173–201 (2013). https://doi.org/10.1039/C2CS35288E

    Article  CAS  Google Scholar 

  8. Y. Cao, D. Wu, P. Zhu, D. Shan, X. Zeng, J. Xu, Down-shifting and anti-reflection effect of CsPbBr3 quantum dots/multicrystalline silicon hybrid structures for enhanced photovoltaic properties. Nanomaterials 10, 775 (2020). https://doi.org/10.3390/nano10040775

    Article  CAS  Google Scholar 

  9. A. Pardo Perdomo, R. Vignoto Fernandes, N.J. Artico Cordeiro, F. Franchello, M.A. Toledo da Silva, J. Leonil Duarte, E. Laureto, Luminescent down-shifting film based on optimized mixture of organic dyes for improving the performance of P3HT:PC61BM photovoltaic devices. J. Appl. Phys. 128, 035502 (2020). https://doi.org/10.1063/5.0003629

    Article  CAS  Google Scholar 

  10. M.A. Cardoso, S.F.H. Correia, A.R. Frias, H.M.R. Gonçalves, R.F.P. Pereira, S.C. Nunes, M. Armand, P.S. André, V. de Zea Bermudez, R.A.S. Ferreira, Solar spectral conversion based on plastic films of lanthanide-doped ionosilicas for photovoltaics: down-shifting layers and luminescent solar concentrators. J. Rare Earths 38, 531–538 (2020). https://doi.org/10.1016/j.jre.2020.01.007

    Article  CAS  Google Scholar 

  11. S.F. Correia, V. de Zea Bermudez, S.J. Ribeiro, P.S. André, R.A. Ferreira, L.D. Carlos, Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. J. Mater. Chem. A 2, 5580–5596 (2014). https://doi.org/10.1039/C3TA14964A

    Article  CAS  Google Scholar 

  12. I. Levchuk, C. Würth, F. Krause, A. Osvet, M. Batentschuk, U. Resch-Genger, C. Kolbeck, P. Herre, H.P. Steinrück, W. Peukert, C.J. Brabec, Industrially scalable and cost-effective Mn2+doped ZnxCd1−xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy Environ. Sci. 9, 1083–1094 (2016). https://doi.org/10.1039/C5EE03165F

    Article  CAS  Google Scholar 

  13. N. Chander, S.K. Sardana, P.K. Parashar, A.F. Khan, S. Chawla, V.K. Komarala, Improving the short wavelength spectral response of silicon solar cells by spray deposition of YVO4: Eu3+ downshifting phosphor nanoparticles. IEEE J. Photovolt. 5, 1373–1379 (2015). https://doi.org/10.1109/JPHOTOV.2015.2438633

    Article  Google Scholar 

  14. G. Shao, C. Lou, D. Xiao, Enhancing the efficiency of solar cells by down shifting YAG: Ce3+ phosphors. J. Lumin. 157, 344–348 (2015). https://doi.org/10.1016/j.jlumin.2014.08.064

    Article  CAS  Google Scholar 

  15. P. Chung, H. Chung, P.H. Holloway, Phosphor coatings to enhance Si photovoltaic cell performance. J. Vac. Sci. Technol. A 25, 61–66 (2007). https://doi.org/10.1116/1.2393298

    Article  CAS  Google Scholar 

  16. C. de Mayrinck, D.P. Santos, S.J.L. Ribeiro, M.A. Schiavon, J.L. Ferrari, Reassessment of the potential applications of Eu3+-doped Y2O3 photoluminescent material in ceramic powder form. Ceram. Int. 40, 15965–15971 (2014). https://doi.org/10.1016/j.ceramint.2014.07.125

    Article  CAS  Google Scholar 

  17. S.K. Karunakaran, C. Lou, G.M. Arumugam, C. Huihui, D. Pribat, Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+–Yb3+ co-doped YAG phosphors. Sol. Energy 188, 45–50 (2019). https://doi.org/10.1016/j.solener.2019.05.076

    Article  CAS  Google Scholar 

  18. W.B. Hung, T.M. Chen, Efficiency enhancement of silicon solar cells through a downshifting and antireflective oxysulfide phosphor layer. Sol. Energy Mater. Sol. Cells 133, 39–47 (2015). https://doi.org/10.1016/j.solmat.2014.11.011

    Article  CAS  Google Scholar 

  19. G. Li, J. Chen, Z. Mao, W. Song, T. Sun, D. Wang, Atmospheric pressure preparation of red-emitting CaAlSiN3:Eu2+ phosphors with variable fluxes and their photoluminescence properties. Ceram. Int. 42, 1756–1761 (2016). https://doi.org/10.1016/j.ceramint.2015.09.136

    Article  CAS  Google Scholar 

  20. H.S. Kim, K. Machida, T. Horikawa, H. Hanzawa, Luminescence properties of CaAlSiN3:Eu2+ phosphor prepared by direct-nitriding method using fine metal hydride powders. J. Alloys Compd. 633, 97–103 (2015). https://doi.org/10.1016/j.jallcom.2015.01.069

    Article  CAS  Google Scholar 

  21. Z. Hosseini, N. Taghavinia, E.W.G. Diau, Application of a dual functional luminescent layer to enhance the light harvesting efficiency of dye sensitized solar cell. Mater. Lett. 188, 92–94 (2017). https://doi.org/10.1016/j.matlet.2016.10.104

    Article  CAS  Google Scholar 

  22. Z. Hosseini, E.W.G. Diau, K. Mehrany, N. Taghavinia, Assessment of luminescent downshifting layers for the improvement of light-harvesting efficiency in dye-sensitized solar cells. ChemPhysChem 15, 3791–3799 (2014). https://doi.org/10.1002/cphc.201402505

    Article  CAS  Google Scholar 

  23. Z. Hosseini, W.K. Huang, C.M. Tsai, T.M. Chen, N. Taghavinia, E.W.G. Diau, Enhanced light harvesting with a reflective luminescent down-shifting layer for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 5397–5402 (2013). https://doi.org/10.1021/am401584y

    Article  CAS  Google Scholar 

  24. C.R. Ronda, Recent achievements in research on phosphors for lamps and displays. J. Lumin. 72, 49–54 (1997). https://doi.org/10.1016/S0022-2313(96)00374-2

    Article  Google Scholar 

  25. J. Ueda, S. Tanabe, K. Takahashi, T. Takeda, N. Hirosaki, Thermal quenching mechanism of CaAlSiN3:Eu2+ red phosphor. Bull. Chem. Soc. Jpn. 91, 173–177 (2018). https://doi.org/10.1246/bcsj.20170307

    Article  CAS  Google Scholar 

  26. R.S. Meltzer, S.P. Feofilov, B. Tissue, H.B. Yuan, Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium. Phys. Rev. B 60, R14012 (1999). https://doi.org/10.1103/PhysRevB.60.R14012

    Article  CAS  Google Scholar 

  27. H. Cao, C. Lou, L. Li, K.S. Kumar, H. Diao, E.E. Elemike, D. Onwudiwe, A packaging method to improve monocrystalline silicon solar cells with YAG: Ce Phosphors, in 2019 3rd International Conference on Circuits, System and Simulation (ICCSS). IEEE (2019), pp. 225–228. https://doi.org/10.1109/CIRSYSSIM.2019.8935628.

  28. G. Shao, C. Lou, J. Kang, H. Zhang, Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells. Appl. Phys. Lett. 107, 253904 (2015). https://doi.org/10.1063/1.4938748

    Article  CAS  Google Scholar 

  29. W. Tao, Y. Du, The optical properties of solar cells before and after encapsulation. Sol. Energy 122, 718–726 (2015). https://doi.org/10.1016/j.solener.2015.10.007

    Article  CAS  Google Scholar 

  30. J. Gjessing, E.S. Marstein, Optical performance of solar modules. Energy Procedia 38, 348–354 (2013). https://doi.org/10.1016/j.egypro.2013.07.288

    Article  Google Scholar 

  31. S. Huang, C. Lou, H. Diao, Z. Wang, Y. Yin, Efficiency improvement of solar cells by CaAlSiN3:Eu2+ and Y2O3:Eu3+ phosphors. J. Phys. Conf. Ser. 2065, 012005 (2021). https://doi.org/10.1088/1742-6596/2065/1/012005

    Article  Google Scholar 

  32. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto, Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem. Solid-State Lett. 9, H22–H25 (2006). https://doi.org/10.1149/1.2173192

    Article  CAS  Google Scholar 

  33. C.R. Ronda, Phosphors for lamps and displays: an applicational view. J. Alloys Compd. 255, 534–538 (1995). https://doi.org/10.1016/0925-8388(94)07065-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank for the supports from the Natural Science Foundation of Jiangsu (Grant No. BK2011033) and the Primary Research and Development Plan of Jiangsu Province (Grant No. BE2016175).

Funding

The authors declare that no funds, Grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [SH], [YY], and [HD]. The first draft of the manuscript was written by [SH] and [CL] commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chaogang Lou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Lou, C., Diao, H. et al. Enhancing efficiency of crystalline silicon solar cells by the mixture of downshifting CaAlSiN3:Eu2+ and Y2O3:Eu3+ phosphors. J Mater Sci: Mater Electron 33, 17678–17687 (2022). https://doi.org/10.1007/s10854-022-08631-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08631-w

Navigation