Skip to main content
Log in

RETRACTED ARTICLE: Structural, dielectric, and electrical properties of cerium-modified strontium manganite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 20 March 2023

A Correction to this article was published on 05 October 2022

This article has been updated

Abstract

A solid-state reaction technique was used to make cerium (Ce) modified strontium manganite SrMn0.9Ce0.1O3 (SMCO). The Goldschmidt's tolerance factor of 0.95 and the Sure Independence Screening and Sparsifying Operator (SISCO) tolerance factor of 4.02, both are within the permissible range. SMCO’s average crystallite size and micro-lattice strain were determined to be 59.6 nm and 0.439%, respectively. Analysis of the micrograph captured by the scanning electron microscopy (SEM) technique revealed the average grain size of 19.2 μm of the SMCO. The optical bandgap of the SMCO was found to be 4.53 eV for direct allowed transition for photovoltaic applications. The existence of + 4 oxidation state of both Ce and Mn in the SMCO has been ascertained by the X-ray photoelectron spectroscopic technique. The bulk resistance (Rb) decreases from 1.02 × 105 to 1.09 × 103 Ω on increasing the temperature supports the negative temperature coefficient of resistance (NTCR). The semiconductor nature of the material is further validated by the semicircular pattern of Nyquist and/or Cole–Cole plots. The observed change in activation energy with temperature proposes that the conductivity (σac) behavior of the material is due to the thermal activation phenomenon. The evaluation of the field-dependent polarization (P–E) hysteresis loop was also carried out to obtain the coercivity, remnant polarization, maximum electric field, and maximum (saturation) polarization which support the possibility of ferroelectricity in the material. The leakage–current plots between (log J versus log E) at selected temperatures support the existence of Ohmic conduction in the material at low voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Change history

References

  1. G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950)

    Article  CAS  Google Scholar 

  2. J. Jouannaux, A. Haeussler, M. Drobek, A. Ayral, S. Abanades, A. Julie, Ceram. Int. 45, 15636 (2019)

    Article  Google Scholar 

  3. S. Hashimoto, H. Iwahara, J. Electroceram. 4, 225 (2000)

    Article  CAS  Google Scholar 

  4. S. Hashimoto, H. Iwahara, Mater. Res. Bull. 35, 2253 (2000)

    Article  CAS  Google Scholar 

  5. K.J. Lee, E. Iguchi, J. Solid State Chem. 114, 242 (1995)

    Article  CAS  Google Scholar 

  6. C. Jeong, J. Ryu, T. Noh, Y.-N. Kim, H. Lee, Adv. Appl. Ceram. 112, 494 (2013)

    Article  CAS  Google Scholar 

  7. J. Ryu, R. O’Hayre, H. Lee, Solid State Ionics 260, 60 (2014)

    Article  CAS  Google Scholar 

  8. J. Ryu, H. Lee, Appl. Phys. Lett. 105, 111903 (2014)

    Article  Google Scholar 

  9. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  CAS  Google Scholar 

  10. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)

    Article  CAS  Google Scholar 

  11. P.G. De Gennes, Phys. Rev. 118, 41 (1960)

    Article  Google Scholar 

  12. K. Kubo, N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972)

    Article  CAS  Google Scholar 

  13. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)

    Article  CAS  Google Scholar 

  14. A.J. Millis, B.I. Shraiman, R. Mueller, Phys. Rev. Lett. 77, 175 (1996)

    Article  CAS  Google Scholar 

  15. H.A. Jahn, E. Teller, Proc. R. Soc. Lond. A 161, 220 (1937)

    Article  CAS  Google Scholar 

  16. H. Röderm, J. Zang, A.R. Bishop, Phys. Rev. Lett. 76, 1356 (1996)

    Article  Google Scholar 

  17. J.S. Zhou, J.B. Goodenough, Phys. Rev. Lett. 80, 2665 (1998)

    Article  CAS  Google Scholar 

  18. Z. Zeng, Y. Xu, Z. Zhang, Z. Gao, M. Luo, Z. Yin, C. Zhang, J. Xu, B. Huang, F. Luo, Y. Du, C. Yan, Chem. Soc. Rev. 49, 1109 (2020)

    Article  CAS  Google Scholar 

  19. R. Sun, D. Zhou, H. Song, Nano Select 3, 531 (2022)

    Article  CAS  Google Scholar 

  20. W. Xia, Z. Pei, K. Leng, X. Zhu, Nanoscale Res. Lett. 15, 9 (2020)

    Article  CAS  Google Scholar 

  21. D. Dash, N.R. Panda, D. Sahu, Nano Express 2, 010007 (2021)

    Article  Google Scholar 

  22. N.R. Panda, B.S. Acharya, Th.B. Singh, R.K. Gartia, J. Lumin. 136, 369 (2013)

    Article  CAS  Google Scholar 

  23. A. Trovarelli, Catal. Rev. Sci. Eng. 38, 439 (1996)

    Article  CAS  Google Scholar 

  24. B.M. Weckhuysen, M.P. Rosynek, J.H. Lunsford, Phys. Chem. Chem. Phys. 1, 3157 (1999)

    Article  CAS  Google Scholar 

  25. F. Yang, J. Wei, W. Liu, J. Guo, Y. Yang, Mater. Chem. A 2, 5662 (2014)

    Article  CAS  Google Scholar 

  26. S. Tsunekawa, T. Fukuda, A. Kasuya, Appl. Phys. 87, 1318 (2000)

    Article  CAS  Google Scholar 

  27. Y.M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, Appl. Phys. Lett. 69, 185 (1996)

    Article  CAS  Google Scholar 

  28. A. Abdel-Latif, L.A. Al-Hajji, M. Faisal, Sci. Rep. 9, 13932 (2019)

    Article  CAS  Google Scholar 

  29. K. Mandal, G. Panchal, S. Chowdhury, A. Jana, R.J. Choudhary, D.M. Phase, J. Supercond. Novel Magn. 33, 1633 (2020)

    Article  CAS  Google Scholar 

  30. J.W. Guo, P.S. Wang, Y. Yuan, Q. He, J.L. Lu, T.Z. Chen, S.Z. Yang, Y.J. Wang, R. Erni, M.D. Rossell, V. Gopalan, H.J. Xiang, Y. Tokura, P. Yu, Phys. Rev. B 97, 235135 (2018)

    Article  CAS  Google Scholar 

  31. A.K. Mandal, G. Panchal, R.J. Choudhary, D.M. Phase, AIP Conf. Proc. 1953, 100035 (2018)

    Article  Google Scholar 

  32. S. Yasmin, S. Choudhury, M.A. Hakim, A.H. Bhuiyan, M.J. Rahman, J. Ceram. Process. Res. 12, 387 (2011)

    Google Scholar 

  33. C.G. Hu, H. Liu, C.S. Lao, L.Y. Zhang, D. Davidovic, Z.L. Wang, J. Phys. Chem. B 110, 14050 (2006)

    Article  CAS  Google Scholar 

  34. S. Phokha, S. Pinitsoontorn, S. Maensiri, Nano-Micro Lett. 5, 223 (2013)

    Article  CAS  Google Scholar 

  35. C. Xia, P. Hu, B. Chen, X. Wan, Y. He, Mater. Res. Bull. 45, 794 (2010)

    Article  CAS  Google Scholar 

  36. L. Bi, H.-S. Kim, G.F. Dionne, S.A. Speakman, D. Bono, C.A. Ross, J. Appl. Phys. 103, 07D138:1 (2008)

    Article  Google Scholar 

  37. X.B. Chen, G.S. Li, Y.G. Su, X.Q. Qiu, L.P. Li, Z.G. Zou, Nanotechnology 20, 115606 (2009)

    Article  Google Scholar 

  38. N.S. Ferreira, M.A. Macêdo, Adv. Mat. Res. 975, 42 (2014)

    Google Scholar 

  39. N. Sharma, S. Jandaik, S. Kumar, M. Chitkara, I.S. Sandhu, J. Exp. Nanosci. 11, 54 (2016)

    Article  CAS  Google Scholar 

  40. F. Vaja, O. Oprea, D. Ficai, A. Ficai, C. Guan, Dig. J. Nanomater. Biostruct. 9, 187 (2014)

    Google Scholar 

  41. H. Shinjoh, Rare earth metals for automotive exhaust catalysts. J. Alloys Compd. 408–412, 1061 (2006)

    Article  Google Scholar 

  42. M. Sugiura, M. Ozawa, A. Suda, T. Suzuki, T. Kanazawa, Bull. Chem. Soc. Jpn. 78, 752 (2005)

    Article  CAS  Google Scholar 

  43. R.J.H. Voorhoeve, Academic Press, New York, 1 (1977)

  44. N. A. Lange, McGraw-Hill B. Company, New York (1998).

  45. J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, Sci. Adv. 5, eaav0693 (2019)

    Article  CAS  Google Scholar 

  46. S.R. Xie, P. Kotlarz, R.G. Hennig, J.C. Nino, Comput. Mater. Sci. 180, 109690 (2020)

    Article  CAS  Google Scholar 

  47. N. Pandey, A.K. Thakur, Adv. Appl. Ceram. 109, 83 (2010)

    Article  CAS  Google Scholar 

  48. K. Kuroda, N. Ishizawa, N. Mizutani, M. Kato, J. Solid State Chem. 38, 297 (1981)

    Article  CAS  Google Scholar 

  49. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  CAS  Google Scholar 

  50. S.K. Parida, R.N.P. Choudhary, P. Ganga Raju Achary, Ferroelectrics 551, 109 (2019)

    Article  CAS  Google Scholar 

  51. S.K. Parida, Adv. Sci. Lett. 22, 584 (2016)

    Article  Google Scholar 

  52. B. Panda, K.L. Routray, D. Behera, Physica B 583, 411967 (2020)

    Article  CAS  Google Scholar 

  53. A. Ben Jazia Kharrat, N. Moutiab, K. Khirouni, W. Boujelben, Mater. Res. Bull. 105, 75 (2018)

    Article  CAS  Google Scholar 

  54. E.K. Goharshadi, S. Samiee, P. Nancarrow, J. Colloid Interface Sci. 356, 473 (2011)

    Article  CAS  Google Scholar 

  55. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphinc, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)

    Article  CAS  Google Scholar 

  56. S. Gholamrezaei, M. Salavati-Niasari, Ultrasonics Sonochem. 40, 651 (2018)

    Article  CAS  Google Scholar 

  57. M. Ghayebloo, M. Tavoosi, M. Rezvani, Infrared Phys. Technol. 83, 62 (2017)

    Article  CAS  Google Scholar 

  58. S. Kamba, V. Goian, V. Skoromets, J. Hejtmanek, V. Bovtun, M. Kempa, F. Borodavka, P. Vanek, A.A. Belik, J.H. Lee, O. Pacherova, K.M. Rabe, Phys. Rev. B 89, 064308 (2014)

    Article  Google Scholar 

  59. M. Sacchetti, F. Baldini, P. Crispoldi, P. Postorino, A. Dore, Phys. Rev. B 72, 172407 (2005)

    Article  Google Scholar 

  60. C.B. Azzoni, M.C. Mozzati, A. Paleari, V. Massarotti, D. Capsoni, M. Bini, Z. Nat, Forsch. A 53, 693 (1998)

    CAS  Google Scholar 

  61. C.D. Wagner, D.A. Zatko, R.H. Raymond, Anal. Chem. 52, 1445 (1980)

    Article  CAS  Google Scholar 

  62. J.W. Murray, J.G. Dillard, R. Giovanoli, H. Moers, W. Stumm, Geochim. CosmochimActa 49, 463 (1985)

    Article  CAS  Google Scholar 

  63. Q.-H. Wu, M. Liu, W. Jaegermann, Mater. Lett. 59, 1480 (2005)

    Article  CAS  Google Scholar 

  64. N.K. Mohanty, S.K. Satapathy, B. Behera, P. Nayak, R.N.P. Choudhary, J. Adv. Ceram. 1, 221 (2012)

    Article  CAS  Google Scholar 

  65. R.K. Parida, D.K. Pattanayak, B.N. Parida, J. Mater. Sci. Mater. Electron. 28, 16689 (2017)

    Article  CAS  Google Scholar 

  66. B.N. Parida, R.K. Parida, A. Panda, J. Alloys Compd. 696, 338 (2017)

    Article  CAS  Google Scholar 

  67. S.K. Dehury, P.G.R. Achary, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 3682 (2018)

    Article  CAS  Google Scholar 

  68. M. Abbassi, R. Ternane, I. Sobrados, A. Madani, M. Trabelsi-Ayadi, J. Sanz, Ceram. Int. 39, 9215 (2013)

    Article  CAS  Google Scholar 

  69. H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie (Springer, Berlin, 1966)

    Book  Google Scholar 

  70. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  CAS  Google Scholar 

  71. S. Selvasekarapandian, M. Vijaykumar, Mater. Chem. Phys. 80, 29 (2003)

    Article  CAS  Google Scholar 

  72. M.B. Hossen, A.K.M.A. Hossain, J. Adv. Ceram. 4, 217 (2015)

    Article  CAS  Google Scholar 

  73. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  74. S.K. Sinha, S.N. Choudhary, R.N.P. Choudhary, J. Mater. Sci. 39, 315 (2004)

    Article  CAS  Google Scholar 

  75. M.B. Bechir, K. Karoui, M. Tabellout, K. Guidara, A.B. Rhaiem, J. Alloys Compd. 588, 551 (2014)

    Article  Google Scholar 

  76. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    CAS  Google Scholar 

  77. S.K. Parida, R.N.P. Choudhary, P.G.R. Achary, Int. J. Microstruct. Mater. Prop. 15, 107 (2020)

    CAS  Google Scholar 

  78. P.G. Achary, R.N. Choudhary, S.K. Parida, Process. Appl. Ceram. 14, 146 (2020)

    Article  CAS  Google Scholar 

  79. R. Gao, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, C. Fu, Composites B 166, 204 (2019)

    Article  CAS  Google Scholar 

  80. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, J. Alloy. Compd. 795, 501 (2019)

    Article  CAS  Google Scholar 

  81. S. Hajra, M. Sahu, V. Purohit, R.N.P. Choudhary, Heliyon 5, 01654 (2019)

    Article  Google Scholar 

  82. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Chapman & Hall, London, 1990)

    Google Scholar 

  83. J.C. Maxwell, Electricity and Magnetism (Dover, New York, 1954)

    Google Scholar 

  84. K.B.R. Varma, K.V.R. Prasad, J. Mater. Res. 11, 2288 (1996)

    Article  CAS  Google Scholar 

  85. P. Keburis, J. Banys, A. Brilingas, J. Prapuolenis, A. Kholkin, M.E.V. Costa, Ferroelectrics 353, 149 (2007)

    Article  CAS  Google Scholar 

  86. R.P. Pawar, V. Puri, Ceram. Int. 40, 10423 (2014)

    Article  CAS  Google Scholar 

  87. G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  88. M.M.S. Sanad, M.M. Rashad, J. Mater. Sci. 27, 9034 (2016)

    CAS  Google Scholar 

  89. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, Ceram. Int. 39, 1547 (2013)

    Article  CAS  Google Scholar 

  90. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, J. Eur. Ceram. Soc. 32, 4249 (2012)

    Article  CAS  Google Scholar 

  91. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, K. Powers, J. Electron. Mater. 43, 3559 (2014)

    Article  CAS  Google Scholar 

  92. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, K. Powers, Mater. Chem. Phys. 162, 299 (2015)

    Article  CAS  Google Scholar 

  93. S.K. Parida, SPIN 11, 2150018 (2021)

    Article  CAS  Google Scholar 

  94. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  CAS  Google Scholar 

  95. J. Zhao, L. Li, Z. Gui, Sens. Actuators A 95, 46 (2001)

    Article  CAS  Google Scholar 

  96. C.L. Yuan, X.Y. Liu, J.W. Xu, X.W. Zhang, C.R. Zhou, Bull. Mater. Sci. 35, 425 (2012)

    Article  CAS  Google Scholar 

  97. X.G. Tang, J. Wang, Y.W. Zhang, H.L.W. Chan, J. Appl. Phys. 94, 5163 (2003)

    Article  CAS  Google Scholar 

  98. P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, J. Phys. Chem. Solids 137, 109217 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For X-ray photoelectron spectroscopy (XPS) characterization, the authors would like the thank Dr. U. P. Deshpande, Scientist of UGC-DAE-CSR, Indore, and a special thanks to Prof. K.M. Parida, Director, Centre of Nanoscience and nanotechnology for FTIR study.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: [SKP]; Methodology: [SB]; Formal analysis and investigation: [PGRA]; Writing—original draft preparation: [PGRA], [SKP]; Writing—review and editing: [RNPC], [SKP]; Funding acquisition: [PGRA, SKP], Resources: [PGRA], Supervision: [PGRA, SKP]. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. K. Parida.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Research involving human participants and/or animals

There is no research data on the animal product.

Informed consent

All authors are aware of it.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10854-023-10260-w

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achary, P.G.R., Behera, S., Choudhary, R.N.P. et al. RETRACTED ARTICLE: Structural, dielectric, and electrical properties of cerium-modified strontium manganite ceramics. J Mater Sci: Mater Electron 33, 17619–17636 (2022). https://doi.org/10.1007/s10854-022-08626-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08626-7

Navigation