Skip to main content

Advertisement

Log in

Using “intercalation bridging” to effectively improve the electrothermal properties of sheet graphite / ultrafine carbon powder conductive paste for screen printing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrothermal materials can easily and controllably convert electric energy into heat energy, and are widely used in many electrothermal fields. In this paper, a series of conductive pastes were simply prepared by ball milling, and their rheological and electrothermal properties were studied. Phenolic resin was used as curing agent of epoxy resin and rheological modifier, which could make the paste have very good printing applicability. Ultrafine carbon(UC) powder has excellent dispersion effect. Sheet carbon materials such as graphite powder(GP), graphite nanosheet(GS) and graphene(GE) would improve the performance of paste using only UC as conductive filler. It was proved that GE with the smallest thickness has the most obvious lifting effect. UC was gathered around the graphene sheet, as a bridge between graphene sheets. GE could also be connected with each other to build a more effective and denser conductive path. The electrothermal film could reach 199°C under 30 V voltage, increasing by 254.7% compared with the electrothermal film with only UC as conductive filler. The electrothermal film had a short response time, good recyclability and excellent flexibility. The electrothermal film also had certain electromagnetic shielding efficiency. The electromagnetic shielding efficiency SE could reach about 20 dB at 30–1500 MHz, and the ratio of field strength before and after attenuation SE% could reach 97% + . This electrothermal film has simple preparation process, good printing applicability, controllable film resistance, excellent flexibility, fast response speed and good recyclability. It is suitable for large-scale preparation and has broad application prospects in many scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. F.C. Krebs, M. Jorgensen, K. Norrman et al., Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009). https://doi.org/10.1016/j.solmat.2008.12.001

    Article  CAS  Google Scholar 

  2. G. Grau, J. Cen, H. Kang et al., Flex. Print. Electron. 1(2), 023002 (2016). https://doi.org/10.1088/2058-8585/1/2/023002

    Article  CAS  Google Scholar 

  3. J. Leppaniemi, O.H. Huttunen, H. Majumdar et al., Adv. Mater. 27(44), 7168–7175 (2015). https://doi.org/10.1002/adma.201502569

    Article  CAS  Google Scholar 

  4. Y. Aleeva, B. Pignataro, Journal of Materials Chemistry C 2(32), 6436–6453 (2014). https://doi.org/10.1039/c4tc00618f

    Article  CAS  Google Scholar 

  5. J.N. Wang, H.J. Tan, D. Xiao et al., Chem. Phys. Lett. 741, 137098 (2020). https://doi.org/10.1016/j.cplett.2020.137098

    Article  CAS  Google Scholar 

  6. Y.Z. Liu, W. Zhang, H.L. Yu et al., Chem. Phys. Lett. 708, 28–31 (2018). https://doi.org/10.1016/j.cplett.2018.07.057

    Article  CAS  Google Scholar 

  7. Z. Wang, X.W. Liang, T. Zhao et al., J. Mater. Sci. 28(22), 16939–16947 (2017). https://doi.org/10.1007/s10854-017-7614-y

    Article  CAS  Google Scholar 

  8. Y. Yu, X. Xiao, Y.K. Zhang et al., Adv. Mater. 28(24), 4926–4934 (2016). https://doi.org/10.1002/adma.201505119

    Article  CAS  Google Scholar 

  9. Y. Guo, M.T. Otley, M.F. Li et al., ACS Appl. Mater. Interfaces. 8(40), 26998–27005 (2016). https://doi.org/10.1021/acsami.6b08036

    Article  CAS  Google Scholar 

  10. A.P.S. Gaur, W.J. Xiang, A. Nepal et al., ACS Appl. Energy Mater. 4(8), 7632–7641 (2021). https://doi.org/10.1021/acsaem.1c00919

    Article  CAS  Google Scholar 

  11. A. Arena, C. Branca, C. Ciofi et al., Nanomaterials 11(10), 2589 (2021). https://doi.org/10.3390/nano11102589

    Article  CAS  Google Scholar 

  12. L.Q. Zhang, R. Wang, J.L. Wang et al., Nanoscale 11(5), 2343–2354 (2019). https://doi.org/10.1039/c8nr08933g

    Article  CAS  Google Scholar 

  13. A.K. Geim, Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  14. M.M. Ghannam, Z.K. Heiba, M.M.S. Sanad et al., Appl. Phys. A 126, 332 (2020). https://doi.org/10.1007/s00339-020-03513-6

    Article  CAS  Google Scholar 

  15. M.M.S. Sanad, M.H. El-Sadek, Diam. Relat. Mater. 121, 108722 (2021). https://doi.org/10.1016/j.diamond.2021.108722

    Article  CAS  Google Scholar 

  16. L. Huang, Y. Huang, J.J. Liang et al., Nano Res. 4(7), 675–684 (2011). https://doi.org/10.1007/s12274-011-0123-z

    Article  CAS  Google Scholar 

  17. D. Zhang, B.H. Chi, B.W. Li et al., Synth. Met. 217, 79–86 (2016). https://doi.org/10.1016/j.synthmet.2016.03.014

    Article  CAS  Google Scholar 

  18. G. Hassan, J. Bae, A. Hassan et al., Composites Part A 107, 519–528 (2018). https://doi.org/10.1016/j.compositesa.2018.01.031

    Article  CAS  Google Scholar 

  19. T. Leng, K.W. Pang, Y.W. Zhang et al., ACS Appl.Nano Mater. 2(10), 6197–6208 (2019). https://doi.org/10.1021/acsanm.9b01034

    Article  CAS  Google Scholar 

  20. B. Li, N.T. Hu, Y.J. Su et al., ACS Appl. Mater. Interfaces. 11(49), 46044–46053 (2019). https://doi.org/10.1021/acsami.9b12225

    Article  CAS  Google Scholar 

  21. J. Liu, J.L. Ye, F. Pan et al., Sci. China-Mater. 62(4), 545–554 (2019). https://doi.org/10.1007/s40843-018-9309-x

    Article  CAS  Google Scholar 

  22. K. Fu, Y.B. Wang, C.Y. Yan et al., Adv. Mater. 28(13), 2587–2594 (2016). https://doi.org/10.1002/adma.201505391

    Article  CAS  Google Scholar 

  23. L.V. Cuong, N.D. Thinh, L.T.T. Nghia et al., Inorg. Chem. Commun. 118, 108033 (2020). https://doi.org/10.1016/j.inoche.2020.108033

    Article  CAS  Google Scholar 

  24. D. Sui, Y. Huang, L. Huang et al., Small 7(22), 3186–3192 (2011). https://doi.org/10.1002/smll.201101305

    Article  CAS  Google Scholar 

  25. J.Z. Lu, P.K. Xie, Z. Fang et al., Energies 11(6), 1610 (2018). https://doi.org/10.3390/en11061610

    Article  CAS  Google Scholar 

  26. W.X. Tian, Y. Zhang, J.J. Liu et al., Polym. Adv. Technol. 31(5), 1088–1098 (2020). https://doi.org/10.1002/pat.4843

    Article  CAS  Google Scholar 

  27. J. Wu, H.F. Wang, J. Qiu et al., Progress Nat. Sci. 30(3), 312–320 (2020). https://doi.org/10.1016/j.pnsc.2020.05.007

    Article  CAS  Google Scholar 

  28. J. Luo, H.F. Lu, Q.C. Zhang et al., Carbon 110, 343–349 (2016). https://doi.org/10.1016/j.carbon.2016.09.016

    Article  CAS  Google Scholar 

  29. Y. Liao, Y.F. Tian, X.H. Ma et al., ACS Appl. Mater. Interfaces. 12(42), 48077–48083 (2020). https://doi.org/10.1021/acsami.0c10924

    Article  CAS  Google Scholar 

  30. C. Phillips, A. Al-Ahmadi, S.J. Potts et al., J. Mater. Sci. 52(16), 9520–9530 (2017). https://doi.org/10.1007/s10853-017-1114-6

    Article  CAS  Google Scholar 

  31. Z. Barani, F. Kargar, A. Mohammadzadeh et al., Adv. Electron. Mater. 6(11), 2000520 (2020). https://doi.org/10.1002/aelm.202000520

    Article  CAS  Google Scholar 

  32. Z.W. Li, Z.J. Lin, M.S. Han et al., ACS Appl. Nano Mater. 4(7), 7461–7470 (2021). https://doi.org/10.1021/acsanm.1c01471

    Article  CAS  Google Scholar 

  33. S.U.D. Khan, M. Arora, M.A. Wahab et al., J. Polym 2014, 1–7 (2014). https://doi.org/10.1155/2014/193058

    Article  Google Scholar 

  34. M.H. Overgaard, M. Kuhnel, R. Hvidsten et al., Adv. Mater. Technol. 2(7), 1700011 (2017). https://doi.org/10.1002/admt.201700011

    Article  CAS  Google Scholar 

  35. A. Glasser, E. Cloutet, G. Hadziioannou et al., Chem. Mater. 31(17), 6936–6944 (2019). https://doi.org/10.1021/acs.chemmater.9b01387

    Article  CAS  Google Scholar 

  36. D.D. Li, W.Y. Lai, F. Feng et al., Adv. Mater. Interfaces 8(13), 2100548 (2021). https://doi.org/10.1002/admi.202100548

    Article  CAS  Google Scholar 

  37. H.W. Lin, C.P. Chang, W.H. Hwu et al., J. Mater. Process. Technol. 197(1–3), 284–291 (2008). https://doi.org/10.1016/j.jmatprotec.2007.06.067

    Article  CAS  Google Scholar 

  38. J.J. Liang, K. Tong, Q.B. Pei, Adv. Mater. 28(28), 5986–5996 (2016). https://doi.org/10.1002/adma.201600772

    Article  CAS  Google Scholar 

  39. S.Y. Luo, W.C. Xu, N. Wang et al., J. Coat. Technol. Res. 10(6), 769–774 (2013). https://doi.org/10.1007/s11998-008-9120-x

    Article  CAS  Google Scholar 

  40. X. Yang, X.M. Li, Q.Q. Kong et al., Sci. China Mater. 63(3), 392–402 (2020). https://doi.org/10.1007/s40843-019-1210-3

    Article  CAS  Google Scholar 

  41. K. Hu, S.Z. Liu, J.X. Lei et al., Polym. Compos. 36(3), 467–474 (2015). https://doi.org/10.1002/pc.22961

    Article  CAS  Google Scholar 

  42. D. Janas, K.K. Koziol, Nanoscale 6(6), 3037–3045 (2014). https://doi.org/10.1039/c3nr05636h

    Article  CAS  Google Scholar 

  43. X.F. Ding, S.X. Zhou, G.X. Gu et al., J. Coat. Technol. Res. 8(6), 757–764 (2011). https://doi.org/10.1007/s11998-011-9358-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PG. The first draft of the manuscript was written by PG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Weijin Liu or Jin Yang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8891 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Liu, W. & Yang, J. Using “intercalation bridging” to effectively improve the electrothermal properties of sheet graphite / ultrafine carbon powder conductive paste for screen printing. J Mater Sci: Mater Electron 33, 17599–17618 (2022). https://doi.org/10.1007/s10854-022-08625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08625-8

Navigation