Skip to main content
Log in

Effect of solid lubricant silicone powder on the fluidity and properties of polyarylene ether nitrile nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Improving the processing performance of polymers is an eternal topic in the polymer field. As a processing aid, solid lubricants improve the shortcomings of liquid lubricants that are easy to migrate. In this work, silicone powder was introduced into polyarylene ether nitrile (PEN)/multi-walled carbon nanotubes (MWCNTs) composites as a solid lubricant to improve the flowability and processability. Firstly, the effects of silicone powder and MWCNTs on the mechanical properties, thermal properties, dielectric properties and rheological properties of the composites were investigated. The experimental results show that the fluidity of the composites is improved obviously by adding silicone powder. In addition, a comparative experiment was carried out. Compared with PEN/MWCNTs composites, PEN/silicone powder/MWCNTs composites have better processing properties and dielectric properties. The complex viscosity is 308.1 at 102 Hz and the dielectric constant is 1 × 105 at 103 Hz. Therefore, silicone powder is of great research value as a solid lubricant in the field of polymer-based functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. M.A. Mahdi, S.R. Yousefi, L.S. Jasim et al., Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrog. Energy 47(31), 14319–14330 (2022)

    Article  CAS  Google Scholar 

  2. S.R. Yousefi, H.A. Alshamsi, O. Amiri et al., Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  3. U.O. Uyor, A.P.I. Popoola, O.M. Popoola et al., Thermal, mechanical and dielectric properties of functionalized sandwich BN-BaTiO3-BN/polypropylene nanocomposites. J. Alloys Compd. 894, 162405 (2022)

    Article  CAS  Google Scholar 

  4. S.R. Yousefi, M. Ghanbari, O. Amiri et al., Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104(7), 2952–2965 (2021)

    Article  CAS  Google Scholar 

  5. B. Li, J. Luo, X. Huang et al., A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos. Part B 181, 107580 (2020)

    Article  CAS  Google Scholar 

  6. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei et al., Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrog. Energy 44(43), 24005–24016 (2019)

    Article  CAS  Google Scholar 

  7. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  8. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv. Powder Technol. 28(4), 1258–1262 (2017)

    Article  CAS  Google Scholar 

  9. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, Hydrothermal synthesis of nickel hydroxide nanostructures and flame retardant poly vinyl alcohol and cellulose acetate nanocomposites. J. Nanostruct. 6(1), 77–82 (2016)

    Google Scholar 

  10. Z. Lou, Q. Wang, U.I. Kara et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2022)

    Article  CAS  Google Scholar 

  11. Z. Lou, Q. Wang, X. Zhou et al., An angle-insensitive electromagnetic absorber enabling a wideband absorption. J. Mater. Sci. Technol. 113, 33–39 (2022)

    Article  Google Scholar 

  12. K. Ke, P. Poetschke, N. Wiegand et al., Tuning the network structure in poly(vinylidene fluoride)/carbon nanotube nanocomposites using carbon black: toward improvements of conductivity and piezoresistive sensitivity. Acs Appl. Mater. Interfaces 8(22), 14190–14199 (2016)

    Article  CAS  Google Scholar 

  13. Z.-M. Dang, J.-K. Yuan, J.-W. Zha et al., Fundamentals, processes and applications of high-permittivity polymer matrix composites. Prog. Mater. Sci. 57(4), 660–723 (2012)

    Article  CAS  Google Scholar 

  14. M. Molberg, D. Crespy, P. Rupper et al., High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv. Funct. Mater. 20(19), 3280–3291 (2010)

    Article  CAS  Google Scholar 

  15. Q.M. Zhang, H.F. Li, M. Poh et al., An all-organic composite actuator material with a high dielectric constant. Nature 419(6904), 284–287 (2002)

    Article  CAS  Google Scholar 

  16. L. Zuo, K. Li, D. Ren et al., Surface modification of aramid fiber by crystalline polyarylene ether nitrile sizing for improving interfacial adhesion with polyarylene ether nitrile. Compos. Part B 217, 22841–22848 (2021)

    Article  CAS  Google Scholar 

  17. Y. You, L. Tu, Y. Wang et al., Achieving secondary dispersion of modified nanoparticles by hot-stretching to enhance dielectric and mechanical properties of polyarylene ether nitrile composites. Nanomaterials 9(7), 1006 (2019)

    Article  CAS  Google Scholar 

  18. L. Wang, X. Liu, C. Liu et al., Ultralow dielectric constant polyarylene ether nitrile foam with excellent mechanical properties. Chem. Eng. J. 384, 123231 (2020)

    Article  CAS  Google Scholar 

  19. Q. Qi, P. Zheng, Y. Lei et al., Design of bi-modal pore structure polyarylene ether nitrile/SiO2 foams with ultralow-k dielectric and wave transparent properties by supercritical carbon dioxide. Compos. Part B 173, 106915 (2019)

    Article  CAS  Google Scholar 

  20. Q. Qi, J. Qin, R. Zhang et al., Mechanically robust and thermally insulating polyarylene ether nitrile with a bone-like structure. Mater. Des. 196, 109099 (2020)

    Article  CAS  Google Scholar 

  21. S. Liu, C. Liu, Y. You et al., Fabrication of BaTiO3-loaded graphene nanosheets-based polyarylene ether nitrile nanocomposites with enhanced dielectric and crystallization properties. Nanomaterials 9(12), 1667 (2019)

    Article  CAS  Google Scholar 

  22. Q. Xiao, W. Han, R. Yang et al., Mechanical, dielectric, and thermal properties of polyarylene ether nitrile and boron nitride nanosheets composites. Polym. Compos. 39, E1598–E1605 (2018)

    Article  CAS  Google Scholar 

  23. L. Tu, Y. You, C. Liu et al., Enhanced dielectric and energy storage properties of polyarylene ether nitrile composites incorporated with barium titanate nanowires. Ceram. Int. 45(17), 22841–22848 (2019)

    Article  CAS  Google Scholar 

  24. J. Chang, G. Liang, A. Gu et al., The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50(2), 689–698 (2012)

    Article  CAS  Google Scholar 

  25. Q. Xiao, R.Q. Yang, Y. You et al., Crystalline, mechanical and dielectric properties of polyarylene ether nitrile with multi-walled carbon nanotube filled with polyarylene ether nitrile. J. Nanosci. Nanatechnol. 18(6), 4311–4317 (2018)

    Article  CAS  Google Scholar 

  26. W. Xiao, L. Wang, B. Li et al., Interface-engineered reduced graphene oxide assembly on nanofiber surface for high performance strain and temperature sensing. J. Colloid Interface Sci. 608, 931–941 (2022)

    Article  CAS  Google Scholar 

  27. P.T. Hieu, H. Van Tung, Thermal buckling and postbuckling of CNT-reinforced composite cylindrical shell surrounded by an elastic medium with tangentially restrained edges. J. Thermoplast. Compos. Mater. 34(7), 861–883 (2021)

    Article  Google Scholar 

  28. L. Hui, G. Wu, J. Yang et al., Comparison of the wear resistance performance of PTFE powder and silicone powder in nylon 66. Organo-Fluorine Ind. 01, 16-19 + 64 (2018)

    Google Scholar 

  29. Z.Q. Pan, R. Sun, S.L. Zhu et al., The synthesis, characterization and properties of silicone adhesion promoters for addition-cure silicone rubber. J. Adhes. Sci. Technol. 32(14), 1517–1530 (2018)

    Article  CAS  Google Scholar 

  30. B. Liu, X.W. Sun, D.J.C.P.I. Qiu, Research on the scratch resistant performance of silicone powder to modification of PC system. Plast. Ind. 40(3), 112–114 (2012)

    CAS  Google Scholar 

  31. Z. Pedzich, D.M. Bielinski, J. Dul et al. in Optimisation of the ceramic phase for ceramizable silicone rubber based composites—microstructural aspect, 4th International Symposium on Advanced Ceramics (ISAC-4), Osaka, Japan, Nov 14–18; Osaka, JAPAN, 2010; pp. 226

  32. X. Huang, Z. Pu, L. Tong et al., Novel PEN/BaTiO3/MWCNT multicomponent nanocomposite film with high thermal stability for capacitor applications. J. Electron. Mater. 42(4), 726–733 (2013)

    Article  CAS  Google Scholar 

  33. S.R. Yousefi, A. Sobhani, H.A. Alshamsi et al., Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11(19), 11500–11512 (2021)

    Article  CAS  Google Scholar 

  34. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari et al., Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)(2) nanoparticles, Ni/Ni(OH)(2) and Ni/NiO magnetic nanocomposites. J. Mater. Sci. 27(2), 1244–1253 (2016)

    CAS  Google Scholar 

  35. X. Bian, R. Tuo, W. Yang et al., Mechanical, thermal, and electrical properties of BN-epoxy composites modified with carboxyl-terminated butadiene nitrile liquid rubber. Polymers 11(10), 1548 (2019)

    Article  CAS  Google Scholar 

  36. Y. You, C. Zhan, L. Tu et al., Polyarylene ether nitrile-based high-k composites for dielectric applications. Int. J. Polym. Sci. 2018, 511908 (2018)

    Article  CAS  Google Scholar 

  37. Y. You, Y. Wang, L. Tu et al., Interface modulation of core-shell structured BaTiO3@polyaniline for novel dielectric materials from its nanocomposite with polyarylene ether nitrile. Polymers 10(12), 1378 (2018)

    Article  CAS  Google Scholar 

  38. Z. Lou, Q. Wang, Y. Zhang et al., In-situ formation of low-dimensional, magnetic core-shell nanocrystal for electromagnetic dissipation. Compos. Part B 214, 108744 (2021)

    Article  CAS  Google Scholar 

  39. X. Huang, Z. Pu, M. Feng et al., BaTiO3@MWCNTs core/shell nanotubes embedded PEN nanocomposite films with high thermal stability and high permittivity. Mater. Lett. 96, 139–142 (2013)

    Article  CAS  Google Scholar 

  40. F. Jin, M. Feng, X. Huang et al., Effect of SiO2 grafted MWCNTs on the mechanical and dielectric properties of PEN composite films. Appl. Surf. Sci. 357, 704–711 (2015)

    Article  CAS  Google Scholar 

  41. W. Yang, X. Yang, Z. Pu et al., The properties (rheological, dielectric, and mechanical) and microtopography of spherical fullerene-filled poly(arylene ether nitrile) nanocomposites. J. Appl. Polym. Sci. 131(7), 40100 (2014)

    Article  CAS  Google Scholar 

  42. C. Long, R. Wei, X. Huang et al., Mechanical, dielectric, and rheological properties of poly(arylene ether nitrile)-reinforced poly(vinylidene fluoride). High Perform. Polym. 29(2), 178–186 (2017)

    Article  CAS  Google Scholar 

  43. A. Lue, L. Zhang, Effects of carbon nanotubes on rheological behavior in cellulose solution dissolved at low temperature. Polymer 51(12), 2748–2754 (2010)

    Article  CAS  Google Scholar 

  44. B. Zhang, Y. Du, P. Zhang et al., Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 130(3), 1909–1916 (2013)

    Article  CAS  Google Scholar 

  45. M. Kapnistos, A. Hinrichs, D. Vlassopoulos et al., Rheology of a lower critical solution temperature binary polymer blend in the homogeneous, phase-separated, and transitional regimes. Macromolecules 29(22), 7155–7163 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from the National Natural Science Foundation of China (52073039, 51903029, and 51773028), Major Special Projects of Sichuan Province (2019ZDZX0027 and 2019ZDZX0016).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YL; Methodology, YL and LT; Formal Analysis, YL and GY; Investigation, YL, and GY; Data Curation, YL and GY; Writing—Original Draft Preparation, YL and GY; Writing—Review and Editing, YL and LT; Supervision, LT and XL. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Lifen Tong or Xiaobo Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research data policy

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Yang, G., Tong, L. et al. Effect of solid lubricant silicone powder on the fluidity and properties of polyarylene ether nitrile nanocomposite. J Mater Sci: Mater Electron 33, 17559–17570 (2022). https://doi.org/10.1007/s10854-022-08620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08620-z

Navigation