Skip to main content
Log in

Synthesis, growth, and two-photon absorption induced optical limiting action of cytosinium benzoate single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two-photon absorption induced optical limiting action was demonstrated in cytosinium benzoate (CB) under nanosecond laser (532 nm, 9 ns, and 10 Hz) excitation. Intensity dependent open aperture Z-scan experiment exposed the presence of reverse saturable absorption ascribed due to sequential two-photon absorption. Initially CB single crystals were grown at room temperature by slow evaporation solution technique. Single crystal XRD shows that CB belongs to monoclinic crystal system with P21/c space group. Fourier Transform Infrared spectrum was recorded to identify the presence of functional groups. Thermal studies shows that the crystal is stable upto 168 °C. Vickers microhardness studies confirm that the grown crystal was belongs to soft material category. Etching study shows linear rectangular etch patterns (5 s) and well defined stacking planes (10 s) for water etchant. Optical studies demonstrate that CB crystal possess lower cut-off (287 nm) and moderate linear transmittance in visible region. The optical energy band gap of CB crystal was estimated from photoluminescence studies as 3.1 eV. CB with higher two-photon absorption coefficient (1.26 × 10–10 m/W) and lower onset limiting threshold (1.92 × 1012 W/m2) can be a potential candidate for developing laser safety devices under nanosecond green laser excitation regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.D. Watson, F.H. Crick, Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967 (1953). https://doi.org/10.1038/171964b0

    Article  CAS  Google Scholar 

  2. T. Lee, P.Y. Wang, Screening, manufacturing, photoluminescence, and molecular recognition of co-crystals: cytosine with dicarboxylic acids. Cryst. Growth Des. 10, 1419–1434 (2010). https://doi.org/10.1021/cg901412d

    Article  CAS  Google Scholar 

  3. M. Gdaniec, B. Brycki, M. Szafran, Crystal and molecular structure of cytosine trichloroacetate. J. Mol. Struct. 195, 57–64 (1989). https://doi.org/10.1016/0022-2860(89)80158-9

    Article  CAS  Google Scholar 

  4. N. Benali-Cherif, W. Falek, A. Direm, Cytosinium–hydrogen maleate–cytosine (1/1/1). Acta Crystallogr. Sect. E 65, 03058–03059 (2009). https://doi.org/10.1107/S1600536809046571

    Article  CAS  Google Scholar 

  5. R.E. Marsh, R. Bierstedt, E.L. Eichhorn, The crystal structure of cytosine-5-acetic acid. Acta Cryst. 15, 310–316 (1962). https://doi.org/10.1107/S0365110X62000791

    Article  CAS  Google Scholar 

  6. B. Sridhar, K. Ravikumar, Supramolecular hydrogen-bonded networks in cytosinium succinate and cytosinium 4-nitrobenzoate cytosine monohydrate. Acta Crystallogr. Sect. C 64, 0566–0569 (2008). https://doi.org/10.1107/S010827010802979X

    Article  CAS  Google Scholar 

  7. P. Jaikumar, S. Sathishkumar, T. Balakrishnan, K. Ramamurthi, Growth, structural, optical, thermal and mechanical properties of cytosinium hydrogen selenite: a novel nonlinear optical single crystal. Mater. Res. Bull. 78, 96–102 (2016). https://doi.org/10.1016/j.materresbull.2016.02.019

    Article  CAS  Google Scholar 

  8. S.R. Perumalla, E. Suresh, V.R. Pedireddi, Nucleobases in molecular recognition: molecular adducts of adenine and cytosine with COOH functional groups. Angew. Chem. Int. Ed. 44, 7752–7757 (2005). https://doi.org/10.1002/ange.200502434

    Article  CAS  Google Scholar 

  9. C.C. Evans, M.B. Beucher, R. Masse, J.F. Nicoud, Nonlinearity enhancement by solid-state proton transfer: a new strategy for the design of nonlinear optical materials. Chem. Mater. 10, 847–854 (1998). https://doi.org/10.1021/cm970618g

    Article  CAS  Google Scholar 

  10. B.F. Levine, C.G. Bethea, Second and third order hyperpolarizabilities of organic molecules. J. Chem. Phys. 63, 2666–2682 (1975). https://doi.org/10.1063/1.431660

    Article  CAS  Google Scholar 

  11. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Boston, 1956)

    Google Scholar 

  12. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press, New York, 1990)

    Google Scholar 

  13. K. Ataka, M. Osawa, In situ infrared study of cytosine adsorption on gold electrodes. J. Electroanal. Chem. 460, 188–196 (1999). https://doi.org/10.1016/S0022-0728(98)00375-1

    Article  CAS  Google Scholar 

  14. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1978)

    Google Scholar 

  15. K. Sangwal, B. Surovska, Study of indentation size effect and microhardness of SrLaAlO4 and SrLaGaO4 single crystals. Mater. Res. Innov. 7, 91–104 (2003). https://doi.org/10.1080/14328917.2003.11784768

    Article  CAS  Google Scholar 

  16. X.J. Ren, R.M. Hooper, C. Griffiths, J.L. Henshall, Indentation-size effects in single-crystal MgO. Philos. Mag. A 82, 2113–2120 (2002). https://doi.org/10.1080/01418610208235721

    Article  CAS  Google Scholar 

  17. E.M. Onitsch, Mikroskopie 95, 12–14 (1956)

    Google Scholar 

  18. S. Karan, S.P. Sen Gupta, Vickers microhardness studies on solution-grown single crystals of magnesium sulphate hepta-hydrate. Mater. Sci. Eng. A 398, 198–203 (2005). https://doi.org/10.1016/j.msea.2005.03.016

    Article  CAS  Google Scholar 

  19. B.W. Mott, Micro Indentation Hardness Testing (Butterworths, London, 1956)

    Google Scholar 

  20. W.A. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16, 62–82 (1953). https://doi.org/10.1088/0034-4885/16/1/302

    Article  Google Scholar 

  21. J. Tauc (ed.), Amorphous and Liquid Semiconductors (Plenum, New York, 1974)

    Google Scholar 

  22. A. Philominal, S. Dhanuskodi, R. Philip, Optical limiting characteristics of dichloridobis (1-ethyl-2, 6-dimethylpyridinium-4-olate-κO) zinc (II). Curr. Appl. Phys. 12, 401–404 (2012). https://doi.org/10.1016/j.cap.2011.07.037

    Article  Google Scholar 

  23. P. Smyth, Dielectric Behavior and Structures (McGraw-Hill, New York, 1995)

    Google Scholar 

  24. C. Desai, A.H. Patel, Dielectric studies of ferroelectric rubidium hydrogen tartrate single crystals. J. Mater. Sci. Lett. 8, 361–363 (1989). https://doi.org/10.1007/BF00725524

    Article  CAS  Google Scholar 

  25. S.K. Arora, V. Patel, B. Amin, A. Kothari, Dielectric behaviour of strontium tartrate single crystals. Bull. Mater. Sci 27, 141–147 (2004). https://doi.org/10.1007/BF02708496

    Article  CAS  Google Scholar 

  26. P.B. Chapple, J. Staromlynska, J.A. Hermann, T.J. Mckay, R.G. Mcduff, Single-beam Z-scan: measurement techniques and analysis. J. Nonlinear Opt. Phys. Mater. 6, 251–293 (1997). https://doi.org/10.1142/S0218863597000204

    Article  Google Scholar 

  27. M. Saravanan, T. C. Sabari Girisun, Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures. Appl. Surf. Sci. 392, 904– 911 (2017). https://doi.org/10.1016/j.apsusc.2016.09.109.

  28. C. Babeela, M.A. Assiri, T.C. Sabari Girisun, 2PA and 3PA induced broadband limiting of Cr3+ doped BaB2O4 nanostructures. Opt. Mater. 95, 109267–109276 (2019). https://doi.org/10.1016/j.optmat.2019.109267

    Article  CAS  Google Scholar 

  29. R.L. Sutherland, Handbook of Nonlinear Optics, 2nd edn. (Marcel Dekker, New York, 2003)

    Book  Google Scholar 

  30. J. Wang, W.J. Blau, Solvent effect on optical limiting properties of single-walled carbon nanotube dispersions. J. Phys. Chem. C 21, 2298–2303 (2008). https://doi.org/10.1021/jp709926r

    Article  CAS  Google Scholar 

  31. I. Cohanoschi, M. Garci, C. Toro, F.K.D. Belfield, F.E. Hernandez, Three-photon absorption of a new series of halogenated fluorene derivatives. Chem. Phys. Lett. 430, 133–138 (2006). https://doi.org/10.1016/j.cplett.2006.08.093

    Article  CAS  Google Scholar 

  32. M. Abith, T.C. Sabari Girisun, Excited state absorption induced optical limiting action of MoS2-rGO nanocomposites. J. Mol. Liq. 341, 117337 (2021). https://doi.org/10.1016/j.molliq.2021.117337

    Article  CAS  Google Scholar 

  33. M. Saravanan, T.C. Sabari Girisun, Nonlinear optical absorption and optical limiting properties of cadmium ferrite. Mater. Chem. Phys. 160, 413–419 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Madras, India for single crystal XRD analysis. The authors gratefully acknowledge to Central Instrumentation Facility (CIF), Pondicherry University, India for TG/DTA/DSC and FTIR analysis.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization; Investigation; Writing—Original draft: (PJ), Project administration; Supervision, Writing—Review: (TB), Project administration: (KR), Conceptualization; Writing: (MS), Investigation: Supervision: (TCSG). All authors read and approved the final manuscript.

Corresponding authors

Correspondence to P. Jaikumar or T. Balakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaikumar, P., Balakrishnan, T., Ramamurthi, K. et al. Synthesis, growth, and two-photon absorption induced optical limiting action of cytosinium benzoate single crystal. J Mater Sci: Mater Electron 33, 17502–17512 (2022). https://doi.org/10.1007/s10854-022-08607-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08607-w

Navigation