Skip to main content

Advertisement

Log in

Thermal shock reliability of micro–nano bimodal Cu–Ag sintered joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we investigated the thermal shock reliability of die-attach technology using a micro–nano bimodal Cu–Ag paste, which can considerably reduce material costs compared with a nano-Ag paste. A reliability study of Cu-sintered joints can facilitate large-scale applications in the electric vehicle industry as only a few systematic studies have investigated the thermal shock reliability of low-cost Cu-sintered joints. To evaluate the thermomechanical stability and bond strength of the Cu–Ag sintered joints, a thermal shock test between − 40 and 150 °C for 1000 cycles and die shear tests, respectively, were performed. The thermal shock test results clearly demonstrated that the micro–nano bimodal Cu–Ag sintered joints maintained a high strength (60 MPa) for 1000 cycles. The bimodal Cu–Ag paste die-attach is reliable because of stable microstructures that are free of cracks and interfacial debonding. The results showed that our bimodal Cu–Ag paste die-attach can be used in both Si and SiC power devices operating at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. L.A. Navarro, X. Perpina, P. Godignon, J. Montserrat, V. Banu, M. Vellvehi, X. Jorda, IEEE Trans. Power Electron. 29, 2261 (2014)

    Article  Google Scholar 

  2. A.A. Bajwa, Y. Qin, R. Reiner, R. Quay, J. Wilde, IEEE Trans. Compon. Packag. Manuf. Technol. 5, 2531 (2015)

    Google Scholar 

  3. S. Noh, H. Zhang, K. Suganuma, Materials 11, 155173 (2018)

    Article  Google Scholar 

  4. C. Chen, C. Choe, D. Kim, Z. Zhang, X. Long, Z. Zhou, F. Wu, K. Suganuma, J. Alloys Compd. 834, 155173 (2020)

    Article  CAS  Google Scholar 

  5. J. Li, Y. Xu, Y. Meng, Z. Yin, X. Zhao, Y. Wang, T. Suga, Micromachines 12, 521 (2021)

    Article  Google Scholar 

  6. J. Yeom, S. Nagao, C. Chen, T. Sugahara, H. Zhang, C. Choe, C.-F. Li, K. Suganuma, Appl. Phys. Lett. 114, 253103 (2019)

    Article  Google Scholar 

  7. H. Zhang, W. Wang, H. Bai, G. Zou, L. Liu, P. Peng, W. Guo, J. Alloys Compd. 774, 487 (2019)

    Article  CAS  Google Scholar 

  8. C. Chen, Z. Zhang, Q. Wang, B. Zhang, Y. Gao, T. Sasamura, Y. Odad, N. Ma, K. Suganuma, J. Alloys Compd. 828, 154397 (2020)

    Article  CAS  Google Scholar 

  9. C. Chena, Z. Zhanga, D. Kim, T. Sasamurac, Y. Oda, M.-C. Hsieh, A. Iwaki, A. Suetakea, K. Suganuma, J. Alloys Compd. 862, 158596 (2021)

    Article  Google Scholar 

  10. P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, Y.N. Zhou, ACS Appl. Mater. Interfaces 7, 12597 (2015)

    Article  CAS  Google Scholar 

  11. H. Nishikawa, T. Hirano, T. Takemoto, N. Terada, Open Surf. Sci. J. 3, 60 (2011)

    Article  CAS  Google Scholar 

  12. T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, N. Terada, J. Electron. Mater. 42(6), 1260 (2013)

    Article  CAS  Google Scholar 

  13. Y. Kobayashia, Y. Abe, T. Maeda, Y. Yasuda, T. Morita, J. Mater. Sci. Technol. 3(2), 114 (2014)

    Google Scholar 

  14. J. Liu, H. Chen, H. Ji, M. Li, ACS Appl Mater. Interfaces 8, 33289 (2016)

    Article  CAS  Google Scholar 

  15. J.-W. Yoon, J.-H. Back, Materials 11, 2105 (2018)

    Article  Google Scholar 

  16. C. Lee, N.R. Kim, J. Koo, Y.J. Lee, H.M. Lee, Nanotechnology 26, 455601 (2015)

    Article  Google Scholar 

  17. Y. Tian, Z. Jiang, C. Wang, S. Ding, J. Wen, Z. Liu, C. Wang, RSC Adv. 6, 91783 (2016)

    Article  CAS  Google Scholar 

  18. H. Ji, J. Zhou, M. Liang, H. Lu, M. Li, Ultrason. Sonochem. 41, 375 (2018)

    Article  CAS  Google Scholar 

  19. S. Sakamoto, T. Sugahara, K. Suganuma, J. Mater. Sci. 24, 2593 (2013)

    CAS  Google Scholar 

  20. C. Chen, C. Choe, Z. Zhang, D. Kim, K. Suganuma, J. Mater. Sci. Mater. Electron. 29, 13418 (2018)

    Article  CAS  Google Scholar 

  21. C. Chen, S. Nagao, H. Zhang, J. Jiu, T. Sugahara, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, Proceedings of 66th IEEE Electronic Components and Technology Conference (ECTC) (2016)

  22. AQG 324: Qualification of power modules for use in power electronics converter units in motor vehicles; European Center for Power Electronics: Nuremberg, Germany, 2018.

  23. IEC 60749-25:2003 Semiconductor devices - Mechanical and climatic test methods - Part 25: Temperature cycling

  24. B.-S. Lee, J.W. Yoon, Met. Mater. Int. 23, 958 (2017)

    Article  CAS  Google Scholar 

  25. Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, E. Ide, Mater. Trans. 49, 1537 (2008)

    Article  CAS  Google Scholar 

  26. Test Methods and Procedures For Microelectronics, MIL-STD-883, Method 2019.

  27. Y. Gao, C. Chen, S. Nagao, K. Suganuma, A.S. Bahman, F. Iannuzzo, 20th International Conference on Electronic Packaging Technology (ICEPT) (2019)

  28. H. Magnusson, K. Frisk, Self-diffusion and impurity diffusion of hydrogen, oxygen, sulphur and phosphorus in copper; Technical Report TR-13-24; Svensk Kärnbränslehantering AB: Stockholm (2013)

  29. S. Vorotilo, P.A. Loginov, A.Y. Churyumov, A.S. Prosviryakov, M.Y. Bychkova, S.I. Rupasov, A.S. Orekhov, P.V.K. Korneev, E.A. Levashov, Nanomaterials 10(7), 1261 (2020)

    Article  CAS  Google Scholar 

  30. S. Sakamoto, S. Nagao, K. Suganuma, J. Mater. Sci. Mater. Electron. 24, 2593 (2013)

    Article  CAS  Google Scholar 

  31. J.G. Bai, G.Q. Lu, IEEE Trans. Device Mater. Reliab. 6(3), 436 (2006)

    Article  CAS  Google Scholar 

  32. J.G. Bai, Z.Z. Zhang, J.N. Calata, G.Q. Lu, IEEE Trans. Compon. Packag. Technol. 29(3), 589 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Council of Science & Technology (NST) grant by the Korean government (MSIP) (No. CRC-19-02-ETRI) and the Korea Evaluation Institute of Industrial Technology (KEIT) project (Grant No. 20005139).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [K. Son], [A. Oh], [E. Park], and [H.-C. Bae]. The first draft of the manuscript was written by [K. Son], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kirak Son or Hyun-Cheol Bae.

Ethics declarations

Conflict of interest

The authors claim no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, K., Oh, A., Park, E. et al. Thermal shock reliability of micro–nano bimodal Cu–Ag sintered joints. J Mater Sci: Mater Electron 33, 17493–17501 (2022). https://doi.org/10.1007/s10854-022-08605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08605-y

Navigation