Skip to main content

Advertisement

Log in

Investigation of Sn–Bi–In ternary solders with compositions varying from Sn–Bi eutectic point to 76 °C ternary eutectic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The solder properties of Sn–Bi–In ternary solders of seven different compositions are examined. The compositions are systematically chosen from the liquidus line extending from the Sn–Bi eutectic point to the ternary eutectic point at 76 °C. Using CALPHAD, we acquire information on the vertical-section of the phase diagram and other thermodynamic information such as pasty zone [liquidus temperature (Tliquidus) − solidus temperature (Tsolidus)] for each composition. DSC data obtained from the solder powders show the evolution of several endothermic peaks roughly consistent with the prediction of the phase diagrams. Solder balling testing indicates that the sample of the Sn–Bi eutectic composition forms a single ball whereas other samples, with a wide pasty zone, show the presence of small satellite balls. Microstructure analysis on the reflowed solder balls using scanning electron microscopy discloses that the ternary solder balls are composed of β-Sn, Bi, and BiIn phases. Shear test results indicate that the shear strength of the solders ranges between 41 and 63 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Liu, K.N. Tu, Mater. Today Adv. 8, 100115 (2020)

    Article  Google Scholar 

  2. W.-H. Chen, C.-F. Yu, H.-C. Cheng, Y. Tsai, S.-T. Lu, Microelectron. Reliab. 53, 30 (2013)

    Article  CAS  Google Scholar 

  3. C.-J. Zhan, C.-C. Chuang, J.-Y. Juang, S.-T. Lu, T.-C. Chang, in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 1043–1049.

  4. S. Cheng, C.-M. Huang, M. Pecht, Microelectron. Reliab. 75, 77 (2017)

    Article  CAS  Google Scholar 

  5. J. Glazer, J. Electron. Mater. 23, 693 (1994)

    Article  CAS  Google Scholar 

  6. X. Chen, F. Xue, J. Zhou, S. Liu, G. Qian, J Electron Mater 42, 2708 (2013)

    Article  CAS  Google Scholar 

  7. J.L.F. Goldstein, J.W. Morris, J Electron Mater 23, 477 (1994)

    Article  CAS  Google Scholar 

  8. I. Manasijević, L. Balanović, T.H. Grgurić, D. Minić, M. Gorgievski, Mater. Res. 21, 6 (2018)

    Article  Google Scholar 

  9. A. Sabbar, M. Alaoui-El Belghiti, A. Zrineh, S. El Hajjaji, A. Ben Bachir, Mater. Corros. 52, 298 (2001)

    Article  CAS  Google Scholar 

  10. J. Zhou, Y. Sun, F. Xue, J Alloys Compd. 397, 260 (2005)

    Article  CAS  Google Scholar 

  11. V.T. Witusiewicz, U. Hecht, B. Böttger, S. Rex, J. Alloys Compd. 428, 115 (2007)

    Article  CAS  Google Scholar 

  12. V.T. Witusiewicz, U. Hecht, S. Rex, M. Apel, Acta Mater. 53, 3663 (2005)

    Article  CAS  Google Scholar 

  13. S.H. Kim, J.W. Jeong, T.-S. Lim, D.-Y. Yang, K.B. Kim, Y.J. Kim, J.H. Lee, Y.-J. Kim, S. Yang, Electron. Mater. Lett. 13, 420 (2017)

    Article  Google Scholar 

  14. S.W. Yoon, B.-S. Rho, H.M. Lee, C.-U. Kim, B.-J. Lee, Metall. Mater. Trans. A. 30, 1503 (1999)

    Article  Google Scholar 

  15. M.L. Huang, Q. Zhou, N. Zhao, L.D. Chen, J. Mater. Sci. Mater. Electron. 24, 2624 (2013)

    Article  CAS  Google Scholar 

  16. Q. Li, N. Ma, Y. Lei, J. Lin, H. Fu, J. Gu, J. Electron. Mater. 45, 5800 (2016)

    Article  Google Scholar 

  17. Y.Z. Peng, C.J. Li, J.J. Yang, J.T. Zhang, J.B. Peng, G.J. Zhou, C.J. Pu, J.H. Yi, Metals (Basel) 11, 538 (2021)

    Article  CAS  Google Scholar 

  18. Y.-L. Tsai, W.-S. Hwang, Mater. Trans. 45, 1949 (2004)

    Article  CAS  Google Scholar 

  19. Thermo-Calc Software, TCSLD/solder alloys version 4.2 (2022)

  20. F. Wang, Y. Huang, Z. Zhang, C. Yan, Materials 10, 920 (2017)

    Article  Google Scholar 

  21. J. Chriašteľová, M. Ožvold, J. Alloys Compd. 457, 323 (2008)

    Article  Google Scholar 

  22. R. Nunes, J. H. Adams, J. C. Bean, B. Laboratories, ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (1990)

Download references

Acknowledgements

This work was supported by the Technology Innovation Programs (10080746 and 2000352) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to Hoo-Jeong Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mang, SR., Choi, H. & Lee, HJ. Investigation of Sn–Bi–In ternary solders with compositions varying from Sn–Bi eutectic point to 76 °C ternary eutectic. J Mater Sci: Mater Electron 33, 17453–17461 (2022). https://doi.org/10.1007/s10854-022-08571-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08571-5

Navigation