Skip to main content
Log in

A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TTB (tetragonal tungsten bronze) crystal structures exhibit very interesting physical properties as well as the superiority of having different cationic sites and allowing doping. In the study, the spectroscopic results of TTB-MTa2O6:Dy3+ (M = Sr, Ba, Pb) phosphors are presented using Judd–Ofelt (JO) intensity parameters. The PL and RL spectra of the phosphors exhibited the characteristic emissions of Dy in the visible and infrared regions. The PL excitation spectra were used to determine JO parameters (Ω2, Ω4, Ω6). The decreasing trend of Ω2 parameter and PL asymmetry is SrTa2O6:Dy3+ > PbTa2O6:Dy3+ > BaTa2O6:Dy3+, which shows low electronegativity and shifting to the long wavelength of BaTa2O6:Dy3+ supports the low value of the Ω2 parameter and covalence. The PL decay profiles of all the phosphors are double exponential and the fast decreasing of PL decay components of SrTa2O6:Dy3+ is compatible with the concentration quenching after 5 mol%. The decreasing trend of the observed lifetime is in order BaTa2O6:Dy3+  > PbTa2O6:Dy3+  > SrTa2O6:Dy3+, which can be attributed to the defect centers depending on the increase of the covalency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

There is no such situation.

Code availability

There is no such situation.

References

  1. M. İlhan, İÇ. Keskin, Physica B. 85, 412106 (2020)

    Article  Google Scholar 

  2. M. İlhan, M.İ Katı, İÇ. Keskin, L.F. Güleryüz, J. Alloys Compd. 901, 163626 (2022)

    Article  Google Scholar 

  3. M. İlhan, Solid State Sci. 38, 160–168 (2014)

    Article  Google Scholar 

  4. A.A. El-Maaref, E.A.A. Wahab, Kh.S. Shaaban, M. Abdelawwad, M.S.I. Koubisy, J. Börcsök, E.S. Yousef, Spectrochim. Acta A Mol. Biomol. Spectrosc. 242, 118774 (2020)

    Article  CAS  Google Scholar 

  5. E.A.A. Wahab, A.A. El-Maaref, Kh.S. Shaaban, J. Börcsök, M. Abdelawwad, Opt. Mater. 111, 110638 (2021)

    Article  Google Scholar 

  6. S.K. Gupta, S. Nigam, A.K. Yadav, M. Mohapatra, S.N. Jha, C. Majumder, D. Bhattacharyya, Solid State Sci New J. Chem. 39, 6531–6539 (2015)

    CAS  Google Scholar 

  7. B.R. Judd, Phys. Rev. 127, 750 (1962)

    Article  CAS  Google Scholar 

  8. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    Article  CAS  Google Scholar 

  9. W. Luo, J. Liao, R. Li, X. Chen, Phys. Chem. Chem. Phys. 12, 3276–3282 (2010)

    Article  CAS  Google Scholar 

  10. M. İlhan, İÇ. Keskin, Phys. Chem. Chem. Phys. 22, 19769–19778 (2020)

    Article  Google Scholar 

  11. A.K. Kunti, N. Patra, S.K. Sharma, H.C. Swart, J. Alloys Compd. 735, 2410–2422 (2018)

    Article  CAS  Google Scholar 

  12. S. Dutta, S. Som, S.K. Sharma, RSC Adv. 5, 7380 (2015)

    Article  CAS  Google Scholar 

  13. E. Lee, C.H. Park, D.P. Shoemaker, M. Avdeev, Y.I. Kim, J. Solid State Chem. 191, 232–238 (2012)

    Article  CAS  Google Scholar 

  14. J.Y. Kim, Y.I. Kim, J. Ceram. Soc. Jpn. 123, 419–422 (2015)

    Article  CAS  Google Scholar 

  15. G.K. Layden, Mater. Res. Bull. 2, 533–539 (1967)

    Article  CAS  Google Scholar 

  16. T.A. Vanderah, R.S. Roth, T. Siegrist, W. Febo, J.M. Loezos, W. Wong-Ng, Solid State Sci. 5, 149–164 (2003)

    Article  CAS  Google Scholar 

  17. M.H. Franoombe, B. Lewis, Acta Cryst. 11, 696–703 (1958)

    Article  Google Scholar 

  18. E.C. Subbarao, G. Shirane, F. Jona, Acta Cryst. 13, 226–231 (1964)

    Article  Google Scholar 

  19. M. İlhan, M.K. Ekmekçi, A. Mergen, C. Yaman, Int. J. Appl. Ceram. Technol. 14, 1134–1143 (2017)

    Article  Google Scholar 

  20. M. İlhan, İÇ. Keskin, S. Gültekin, J. Electron Mater. 49, 2436–2449 (2020)

    Article  Google Scholar 

  21. W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49, 4424–4442 (1968)

    Article  CAS  Google Scholar 

  22. C.G. Walrand, K. Binnemans, Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Belgium, 1998), pp. 101–264

    Google Scholar 

  23. T. Wenzel, Molecular and Atomic Spectroscopy (UC Davis Library, the California State University, USA, The LibreTexts libraries, 2022)

    Google Scholar 

  24. C.K. Jayasankar, E. Rukmini, Physica B 240, 273–288 (1997)

    Article  CAS  Google Scholar 

  25. M.P. Hehlen, M.G. Brik, K.W. Krämer, J. Lumin. 136, 221–239 (2013)

    Article  CAS  Google Scholar 

  26. R. Reisfeld, E. Greenberg, R.N. Brown, M.G. Drexhage, C.K. Jørgensen, Chem. Phys. Lett. 95, 91–94 (1983)

    Article  CAS  Google Scholar 

  27. T. Som, B. Karmakar, Spectrochim. Acta A 79, 1766–1782 (2011)

    Article  CAS  Google Scholar 

  28. K. Binnemans, Coord. Chem. Rev. 295, 1–45 (2015)

    Article  CAS  Google Scholar 

  29. K.H. Cheng, J. Aijmo, L. Ma, M. Yao, X. Zhang, J. Como, L.J. Hope-Weeks, J. Huang, W. Chen, J. Phys. Chem. C 112, 17931–17939 (2008)

    Article  CAS  Google Scholar 

  30. B. Padlyak, M. Grınberg, B. Kuklıńskı, Y. Oseledchık, O. Smyrnov, D. Kudryavtcev, A. Prosvırnın, Opt. Appl. 2, 413–426 (2010)

    Google Scholar 

  31. Z.W. Zhang, L. Liu, Y.H. Wang, S.T. Song, D.J. Wang, J. Mater. Sci: Mater. Electron. 26, 4202–4206 (2015)

    CAS  Google Scholar 

  32. U.B. Gokhe, K.A. Koparkar, S.K. Omanwar, J. Mater. Sci: Mater. Electron. 27, 9286–9290 (2016)

    CAS  Google Scholar 

  33. M.K. Ekmekçi, M. İlhan, L.F. Güleryüz, A. Mergen, Optik 128, 26–33 (2017)

    Article  Google Scholar 

  34. M. İlhan, M.K. Ekmekçi, J. Solid State Chem. 226, 243–249 (2015)

    Article  Google Scholar 

  35. C.S. McCamy, Color Res. Appl. 17, 142–144 (1992)

    Article  Google Scholar 

  36. P. Sehrawat, A. Khatkar, P. Boora, M. Kumar, S. Singh, R.K. Malik, S.P. Khatkar, V.B. Taxak, Mater. Manuf. Process. 35, 1259–1267 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We have performed the spectroscopic and structural analyses by ourselves.

Funding

No funding supported.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: Mİ, acquisition of data: İÇK, LFG, and Mİ, analysis and/or interpretation of data: Mİ, İÇK, LFG, and MİK, drafting the manuscript: Mİ, İÇK, MİK, and LFG; revising the manuscript critically for important intellectual content: Mİ and İÇK Author’s name (typed).

Corresponding author

Correspondence to Mustafa İlhan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

We accept the ethical statement.

Informed consent

We have consent for the publication and there is no private information.

Research involved in human and animal rights

Our article does not include humans and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlhan, M., Keskin, İ.Ç., Güleryüz, L.F. et al. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. J Mater Sci: Mater Electron 33, 16606–16620 (2022). https://doi.org/10.1007/s10854-022-08557-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08557-3

Navigation