Skip to main content
Log in

Frequency effect on electrical and dielectric performance of Au/n–GaAs structure with RF sputtering MoO3 interfacial layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of frequency on the electrical and dielectric properties of the metal–semiconductor structure with Molybdenum trioxide (MoO3) interfacial layer was investigated. MoO3 thin film was deposited n-type (100)-oriented GaAs substrate using RF magnetron sputtering method at substrate temperatures of 200 °C. Au was chosen as the metal, and electrical analysis of the Au/n–GaAs structure with MoO3 interfacial layer was performed using capacitance–voltage–frequency (\(C\)Vf) conductance–voltage–frequency (\(G/\omega \)Vf) measurements. \(C\)Vf and \(G/\omega \)Vf outputs were examined, and it was seen that they have inversion, depletion and accumulation regions. According to the experimental results, it was determined that the \(C\) and \(G/\omega \) values were strongly dependent on frequency and voltage, especially in the accumulation and depletion regions. Here, both \(C\) and \(G/\omega \) values decrease with increasing frequency. The structural resistance was obtained by using the \(C\) and \(G/\omega \) data with the Nicollian–Brews method and the series resistance (\({R}_{\text{s}}\)) values were determined from there. At 3 V, the \({R}_{\text{s}}\) values were calculated 454 Ω and 102 Ω for 30 kHz and 1 MHz, respectively. In addition, the \(C\) and \(G/\omega \) values were corrected for the 1 MHz value and a comparative evaluation of the corrected and noncorrected values was made. Moreover, the dielectric parameters of the structure were calculated using the measured \(C\) and \(G/\omega \) data. It was indicated that while dielectric constant and dielectric loss decreased with increasing frequency as in \(C\) and \(G/\omega \), ac conductivity increased due to a decrease in polarization as frequency increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, Y. Wang, J. Alloys Compd. 820, 153194 (2020)

    Article  CAS  Google Scholar 

  2. J.C. Murillo-Sierra, A. Hernández-Ramírez, L. Hinojosa-Reyes, J.L. Guzmán-Mar, Chem. Eng. J. Adv. 5, 100070 (2021)

    Article  Google Scholar 

  3. B. Kınacı, S. Özçelik, J. Electron. Mater. 42, 1108 (2013)

    Article  CAS  Google Scholar 

  4. N. Akin, U.C. Baskose, B. Kinaci, M. Cakmak, S. Ozcelik, Appl. Phys. A 119, 965 (2015)

    Article  CAS  Google Scholar 

  5. N. Akin, B. Kinaci, Y. Ozen, S. Ozcelik, J. Mater. Sci. 28, 7376 (2017)

    CAS  Google Scholar 

  6. Y. Yue, H. Liang, Adv. Energy Mater. 7, 1 (2017)

    Article  CAS  Google Scholar 

  7. Ç. Çetinkaya, E. Çokduygulular, Y. Özen, İ Candan, B. Kınacı, S. Özçelik, J. Mater. Sci. 32, 12330 (2021)

    Google Scholar 

  8. Ç. Çetinkaya, E. Çokduygulular, B. Kınacı, F. Güzelçimen, İ Candan, H.İ Efkere, Y. Özen, S. Özçelik, Opt Mater (Amst) 120, 111457 (2021)

    Article  CAS  Google Scholar 

  9. Ç. Çetinkaya, E. Çokduygulular, B. Kınacı, F. Güzelçimen, Y. Özen, H.İ Efkere, İ Candan, S. Emik, S. Özçelik, Sci. Rep. 11, 1 (2021)

    Article  CAS  Google Scholar 

  10. L.B. Hu, X.Y. Huang, S. Zhang, X. Chen, X.H. Dong, H. Jin, Z.Y. Jiang, X.R. Gong, Y.X. Xie, C. Li, Z.T. Chi, W.F. Xie, J. Mater. Sci. 32, 23728 (2021)

    CAS  Google Scholar 

  11. R. Raj, H. Gupta, L.P. Purohit, Opt. Mater. (Amst.) 126, 112176 (2022)

    Article  CAS  Google Scholar 

  12. I. Kars, S.Ş Çetin, B. Kinaci, B. Sarikavak, A. Bengi, H. Altuntaş, M.K. Öztürk, S. Özçelik, Surf. Interface Anal. 42, 1247 (2010)

    Article  CAS  Google Scholar 

  13. B. Kınacı, T. Asar, S.Ş Çetin, Y. Özen, K. Kızılkaya, J. Optoelectron. Adv. Mater. 14, 959 (2012)

    Google Scholar 

  14. C. Bairam, Y. Yalçın, H.İ Efkere, E. Çokduygulular, Ç. Çetinkaya, B. Kınacı, S. Özçelik, Physica B 616, 413126 (2021)

    Article  CAS  Google Scholar 

  15. E. Çokduygulular, Ç. Çetinkaya, Y. Yalçın, B. Kınacı, J. Mater. Sci. 31, 13646 (2020)

    Google Scholar 

  16. F. Güzelçimen, B. Tanören, Ç. Çetinkaya, M.D. Kaya, H.İ Efkere, Y. Özen, D. Bingöl, M. Sirkeci, B. Kınacı, M.B. Ünlü, S. Özçelik, Vacuum 182, 109766 (2020)

    Article  CAS  Google Scholar 

  17. B. Kınacı, Ç. Çetinkaya, E. Çokduygulular, H.İ Efkere, N.A. Sönmez, S. Özçelik, J. Mater. Sci. 31, 8718 (2020)

    Google Scholar 

  18. S.O. Tan, I. Tascioglu, S. Altindal, IEEE Trans. Electron Devices 68, 5085 (2021)

    Article  CAS  Google Scholar 

  19. Ç.G. Türk, S.O. Tan, Ş Altındal, B. İnem, Physica B 582, 411979 (2020)

    Article  CAS  Google Scholar 

  20. B. Kınacı, C. Bairam, Y. Yalçın, E. Çokduygulular, Ç. Çetinkaya, H.İ Efkere, S. Özçelik, J. Mater. Sci. 33, 10516 (2022)

    Google Scholar 

  21. T. Ashraf, A. Sarkar, W. Grafeneder, R. Koch, J. Appl. Phys. 124, 215301 (2018)

    Article  CAS  Google Scholar 

  22. A. Sarkar, T. Ashraf, W. Grafeneder, R. Koch, J. Phys. 30, 155001 (2018)

    Google Scholar 

  23. M. Sk, Appl. Phys. A 125, 26 (2019)

    Article  CAS  Google Scholar 

  24. H.H. Gullu, D.S.S.D.E. Yıldız, J. Electron. Mater. 50, 7044 (2021)

    Article  CAS  Google Scholar 

  25. D.E. Yıldız, A. Karabulut, İ Orak, A. Turut, J. Mater. Sci. 32, 10209 (2021)

    Google Scholar 

  26. A. Turut, D.E. Yıldız, A. Karabulut, İ Orak, J. Mater. Sci. 31, 7839 (2020)

    CAS  Google Scholar 

  27. S.O. Tan, H.U. Tecimer, O. Çiçek, H. Tecimer, Ş Altındal, J. Mater. Sci. 28, 4951 (2017)

    CAS  Google Scholar 

  28. S.O. Tan, IEEE Trans. Electron Devices 64, 5121 (2017)

    Article  CAS  Google Scholar 

  29. B. Kınacı, Y. Özen, K. Kızılkaya, T. Asar, S.Ş Çetin, E. Boyalı, M.K. Öztürk, T. Memmedli, S. Özçelik, J. Mater. Sci. 24, 1375 (2013)

    Google Scholar 

  30. B. Kınacı, Y. Özen, T. Asar, S.Ş Çetin, T. Memmedli, M. Kasap, S. Özçelik, J. Mater. Sci. 24, 3269 (2013)

    Google Scholar 

  31. Y. Özen, N. Akin, B. Kinaci, S. Özçelik, Sol. Energy Mater. Sol. Cells 137, 1 (2015)

    Article  CAS  Google Scholar 

  32. B. Kınaci, Braz. J. Phys. 51, 553 (2021)

    Article  CAS  Google Scholar 

  33. A. Muhammetgulyyev, O.G. Erbas, B. Kinaci, O. Donmez, Y.G. Celebi, A. Erol, Semicond. Sci. Technol. 34, 085001 (2019)

    Article  CAS  Google Scholar 

  34. A.M. Akbaş, O. Çiçek, Ş Altındal, Y. Azizian-Kalandaragh, J. Mater. Sci.: Mater. Electron. 32, 993 (2021)

    Google Scholar 

  35. N. Baraz, İ Yücedağ, Y. Azizian-Kalandaragh, Ş Altındal, J. Mater. Sci. 28, 1315 (2017)

    CAS  Google Scholar 

  36. B. Akın, Ş Altındal, Physica B 594, 412274 (2020)

    Article  CAS  Google Scholar 

  37. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  38. O. Cicek, G. Koca, S. Altindal, IEEE Trans. Electron Devices 69, 304 (2022)

    Article  CAS  Google Scholar 

  39. H. Tecimer, T. Tunç, Ş Altındal, J. Mater. Sci. 29, 3790 (2018)

    CAS  Google Scholar 

  40. B. Kınacı, SILICON 14, 2717 (2022)

    Article  CAS  Google Scholar 

  41. B. Kınacı, J. Mater. Sci. 32, 5928 (2021)

    Google Scholar 

  42. Ö. Sevgili, İ Taşçıoğlu, S. Boughdachi, Y. Azizian-Kalandaragh, Ş Altındal, Physica B 566, 125 (2019)

    Article  CAS  Google Scholar 

  43. Ş Altındal, M. Ulusoy, S. Özçelik, Y. Azizian-Kalandaragh, J. Mater. Sci. 32, 20071 (2021)

    Google Scholar 

  44. S. Altindal, O. Sevgili, Y. Azizian-Kalandaragh, IEEE Trans. Electron Devices 66, 3103 (2019)

    Article  CAS  Google Scholar 

  45. Ö. Sevgili, Y. Azizian-Kalandaragh, Ş Altındal, Physica B 587, 412122 (2020)

    Article  CAS  Google Scholar 

  46. A. Kocyigit, J. Mater. Sci. 31, 22408 (2020)

    CAS  Google Scholar 

  47. H.H. Gullu, D.E. Yildiz, J. Mater. Sci. 31, 8705 (2020)

    CAS  Google Scholar 

  48. S. Demirezen, H. G. Çetinkaya, and Ş. Altındal, Silicon 50 (2022)

Download references

Acknowledgements

I appreciate to Gazi University Photonics Application and Research Center Manager Prof Süleyman Özçelik for experimental measurements. I appreciate to Associate Prof Barış Kınacı for fruitful discussion on the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çağlar Çetinkaya.

Ethics declarations

Conflict of interest

The author declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetinkaya, Ç. Frequency effect on electrical and dielectric performance of Au/n–GaAs structure with RF sputtering MoO3 interfacial layer. J Mater Sci: Mater Electron 33, 16597–16605 (2022). https://doi.org/10.1007/s10854-022-08556-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08556-4

Navigation