Skip to main content
Log in

Solar-light-induced photocatalyst based on Bi–B co-doped TiO2 prepared via co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple precipitation process was used to make Bismuth and Boron co-doped TiO2 nanorod like particles. To investigate the structural, geometrical, light absorption, and photocatalytic characteristics of the materials, a variety of spectroscopic and quantitative methods were used. According to the findings, all the materials had a highly crystalline anatase structure. The crystalline was attained to be 34 nm, 32 nm, 30 nm and 25 nm, respectively, for TiO2, Bi:TiO2, B:TiO2, and Bi–B:TiO2. From the optical study, band gap energies are achieved to be 3.07, 2.89, and 2.70 eV from the synthesized B:TiO2, Bi:TiO2, and Bi–B:TiO2 nanomaterials. From the observed morphological analysis, spherical shape and rectangular rod-like structure was attained and sizes of the particles are achieved to be range 50–300 nm, approximately. The laboratory findings also suggest that Bi and B ions have been doped into the TiO2 crystal lattice. The produced materials’ photocatalytic potential was investigated. Bi–B co-doped materials showed improved activity for degradation of methylene blue dye under stimulated solar-light irradiation as compared to pure TiO2, B and Bi individually doped TiO2. The experiment was also carried out with various beginning solution pH values, such as 2, 4, 6, and 8, to investigate the role of pH in the degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing and data citation is encouraged and the datasets generated during and/or analyzed during the current study are included within the article and its additional files.

References

  1. X. Zhang, A. Fujishima, M. Jin, A.V. Emeline, T. Murakami, Double-layered TiO2−SiO2 nanostructured films with self-cleaning and antireflective properties. J. Phys. Chem. B 110, 25142–25148 (2006)

    Article  CAS  Google Scholar 

  2. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1, 1–21 (2000)

    Article  CAS  Google Scholar 

  3. E. Sohouli, M. Ghalkhani, M. Rostami, M.R. Nasrabadi, F. Ahmadi, A noble electrochemical sensor based on TiO2@CuO-N-rGO and poly (Lcysteine) nanocomposite applicable for trace analysis of flunitrazepam. Mater. Sci. Eng. C 117, 111300 (2020)

    Article  CAS  Google Scholar 

  4. A.S. Nasab, K. Adib, H. Afshari, M.R. Ganjali, M. Rahimi-Nasrabadi, F. Ahmadi, Synthesis of praseodymium titanate nanoparticles supported on core–shell silica coated magnetite via mild condition and their photocatalytic capability evaluation. J. Mater. Sci. Mater. Electron. 32, 13527–13538 (2021)

    Article  CAS  Google Scholar 

  5. M. Rostami, M. Rahimi-Nasrabadi, M.R. Ganjali, F. Ahmadi, A.F. Shojaei, M. Delavar Rafiee, Facile synthesis and characterization of TiO2–graphene–ZnFe2x TbxO4 ternary nano-hybrids. J. Mater. Sci. 52, 7008–7016 (2017)

    Article  CAS  Google Scholar 

  6. H. Zuo, J. Sun, K. Deng, R. Su, F. Wei, D. Wang, Preparation and characterization of Bi3+–TiO2 and its photocatalytic activity. Chem. Eng. Technol. 30, 577–582 (2007)

    Article  CAS  Google Scholar 

  7. X. Jingjing, Y. Ao, D. Fu, C. Yuan, Synthesis of Bi2O3–TiO2 composite film with high-photocatalytic activity under sunlight irradiation. Appl. Surf. Sci. 255, 2365–2369 (2008)

    Article  Google Scholar 

  8. S. Ahmad, M. Kharkwal, R. Nagarajan, Application of KZnF3 as a single source precursor for the synthesis of nanocrystals of ZnO2: F and ZnO: F; synthesis, characterization, optical, and photocatalytic properties. J. Phys. Chem. C 115, 10131–10139 (2011)

    Article  CAS  Google Scholar 

  9. R. Asashi, T. Morikawa, T. Ohwakl, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    Article  Google Scholar 

  10. C. Burda, Y. Lou, X. Chen, A.C. Samia, J. Stout, J.L. Gole, Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049–1051 (2003)

    Article  CAS  Google Scholar 

  11. H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, Y. Yan, Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem. Mater. 16, 846–849 (2004)

    Article  CAS  Google Scholar 

  12. Y.M. Wu, M.Y. Xing, J.L. Zhang, F. Chen, Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant. Appl. Catal. B Environ. 97, 182–189 (2010)

    Article  CAS  Google Scholar 

  13. D. Chen, D. Yang, Q. Wang, Z. Jiang, Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind. Eng. Chem. Res. 45, 4110–4116 (2006)

    Article  CAS  Google Scholar 

  14. W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-x B x under visible irradiation. J. Am. Chem. Soc. 126, 4782–4783 (2004)

    Article  CAS  Google Scholar 

  15. Q. Kang, B. Yuan, J. Xu, M.L. Fu, Synthesis, characterization and photocatalytic performance of TiO2 co-doped with bismuth and nitrogen. Catal. Lett. 141, 1371–1377 (2011)

    Article  CAS  Google Scholar 

  16. Y. Wang, Y. Wang, Y. Meng, H. Ding, Y. Shan, X. Zhao, X. Tang, A Highly efficient visible light activated photocatalyst based on bismuth and sulfur co-doped TiO2. J. Phys. Chem. C 112, 6620–6626 (2008)

    Article  CAS  Google Scholar 

  17. K. Lv, H. Zuo, J. Sun, K. Deng, S. Liu, X. Li, D. Wang, (Bi, C and N) co-doped TiO2 nanoparticles. J. Hazard. Mater. 161, 396–401 (2009)

    Article  CAS  Google Scholar 

  18. A. Testino, I.R. Bellobono, V. Buscaglia, C. Canevali, M. D’Arienzo, S. Polizzi, R. Scotti, F. Morazzoni, Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology: a systematic approach. J. Am. Chem. Soc. 129, 3564–3575 (2007)

    Article  CAS  Google Scholar 

  19. V. Gombac, L. De Rogatis, A. Gasparotto, G. Vicario, T. Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello, M. Graziani, TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem. Phys. 339, 111–123 (2007)

    Article  CAS  Google Scholar 

  20. Y. Su, S. Han, X. Zhang, X. Chen, L. Lei, Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes. Mater. Chem. Phys. 110, 239–246 (2008)

    Article  CAS  Google Scholar 

  21. J. Li, N. Lu, X. Quan, S. Chen, H. Zhao, Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectron catalytic properties. Ind. Eng. Chem. Res. 47, 3804–3808 (2008)

    Article  CAS  Google Scholar 

  22. X. Chen, W. Lei, D. Liu, J. Hao, Q. Cui, G. Zou, Synthesis and characterization of hexagonal and truncated hexagonal shaped MoO3 nanoplates. J. Phys. Chem. C 113, 21582–21585 (2009)

    Article  CAS  Google Scholar 

  23. D.S. Lambert, S.T. Murphy, A. Lennon, P.A. Burr, Formation of intrinsic and silicon defects in MoO3 under varied oxygen partial pressure and temperature conditions: an ab initio DFT investigation. RSC Adv. 7, 53810 (2017)

    Article  CAS  Google Scholar 

  24. P.M. Kumar, S. Badrinarayanan, M. Sastry, Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358, 122–130 (2000)

    Article  CAS  Google Scholar 

  25. J.X. Zhang, Y.X. Liang, X. Wang, H.J. Zhou, S.Y. Li, J. Zhang, Y. Feng, N. Lu, Q. Wang, Z. Guo, Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv. Compos. Hybrid Mater. 1, 300–309 (2018)

    Article  CAS  Google Scholar 

  26. T. Xiong, F. Dong, Z. Wu, Enhanced extrinsic absorption promotes the visible light photocatalytic activity of wide band-gap (BiO)2CO3 hierarchical structure. RSC Adv. 4, 56307–56312 (2014)

    Article  CAS  Google Scholar 

  27. J. Xu, M. Chen, D. Fu, Study on highly visible light active Bi doped TiO2 composite hollow spheres. Appl. Surf. Sci. 257, 7381–7386 (2011)

    Article  CAS  Google Scholar 

  28. S. Bagwasi, B. Tian, J. Zhang, M. Nasir, Synthesis, characterization and application of bismuth and boron Co-doped TiO2: a visible light active photocatalyst. Chem. Eng. J. 217, 108–118 (2013)

    Article  CAS  Google Scholar 

  29. M. Tayyab, Y. Liu, S. Min, R.M. Irfan, Q. Zhu, L. Zhou, J. Lei, J. Zhang, Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires. Chin. J. Catal. 43, 1165–1175 (2022)

    Article  Google Scholar 

  30. Y. Liu, Q. Zhu, M. Tayyab, L. Zhou, J. Lei, J. Zhang, Single-atom Pt loaded zinc vacancies ZnO–ZnS induced type-V electron transport for efficiency photocatalytic H2 evolution. Solar RRL 5, 2100536 (2021)

    Article  CAS  Google Scholar 

  31. G. Liu, M. Feng, M. Tayyab, J. Gong, M. Zhang, M. Yang, K. Lin, Direct and efficient reduction of perfluorooctanoic acid using bimetallic catalyst supported on carbon. J. Hazard. Mater. 412, 125224 (2021)

    Article  CAS  Google Scholar 

  32. R.A. Rather, S. Singh, B. Pal, Photocatalytic degradation of methylene blue by plasmonic metal-TiO2 nanocatalysts under visible light irradiation. J. Nanosci. Nanotechnol. 17, 1210–1216 (2017)

    Article  CAS  Google Scholar 

  33. F. Loosli, P. Le Coustumer, S. Stoll, Impact of alginate concentration on the stability of agglomerates made of TiO2 engineered nanoparticles: water hardness and pH effects. J. Nanoparticle Res. 17, 1–9 (2015)

    Article  CAS  Google Scholar 

  34. N. Watanabe, S. Horikoshi, H. Hidaka, N. Serpone, On the recalcitrant nature of the triazinic ring species, cyanuric acid, to degradation in Fenton solutions and in UV-illuminated TiO2 (naked) and fluorinated TiO2 aqueous dispersions. J. Photochem. Photobiol. A Chem. 174, 229–238 (2005)

    Article  CAS  Google Scholar 

  35. M. Kunnamareddy, R. Rajendran, M. Sivagnanam, R. Rajendran, B. Diravidamani, Nickel and sulfur codoped TiO2 nanoparticles for efficient visible light photocatalytic activity. J. Inorg. Organometall. Polym. Mater. 31, 2615–2626 (2021)

    Article  CAS  Google Scholar 

  36. R. Jeyachitra, S. Kalpana, T.S. Senthil, M. Kang, Electrical behavior and enhanced photocatalytic activity of (Ag, Ni) co-doped ZnO nanoparticles synthesized from co-precipitation technique. Water Sci. Technol. 81, 1296–1307 (2020)

    Article  CAS  Google Scholar 

  37. A. El Mragui, Y. Logvina, L. Pinto da Silva, O. Zegaoui, J.C. Esteves da Silva, Synthesis of Fe-and Co-doped TiO2 with improved photocatalytic activity under visible irradiation toward carbamazepine degradation. Materials 12, 3874 (2019)

    Article  Google Scholar 

  38. J.J. Li, S.C. Cai, Z. Xu, X. Chen, J. Chen, H.P. Jia, J. Chen, Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light. J. Hazard. Mater. 325, 261–270 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

TSS conceived and designed the study. MS conducted the literature search, Experimental work, analysis and interpretation of data. TSS and NS drafted the manuscript. The study was supervised by MK. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to T. S. Senthil or Misook Kang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeetha, M., Senthil, T.S., Senthilkumar, N. et al. Solar-light-induced photocatalyst based on Bi–B co-doped TiO2 prepared via co-precipitation method. J Mater Sci: Mater Electron 33, 16550–16563 (2022). https://doi.org/10.1007/s10854-022-08547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08547-5

Navigation