Skip to main content
Log in

Effect of particle size on dielectric and microwave absorption properties of starch-derived micron-carbon spheres

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The particle size of absorbents is critical to the electromagnetic parameters and microwave absorption. A tunable particle size and related properties are still a challenge for the study of microwave absorption materials. Here, micron-carbon spheres (MCs) with tunable particle size were designed and prepared to study the size effects. The ε′ decreased from 17.88 to 12.21 at 8.2 GHz as the mean size increases from 1.29 to 1.75 µm, and the ε″ was positively related to D− 1 (diameter) in accordance with the electron mean free path theory. An increasing percolation threshold with increasing particle size was observed from direct current (DC) conductivity analysis. An excellent microwave absorption was obtained from the synergistic effect of polarization loss and conductive loss corresponding to DC conductivity of around 0.02 S/m. The strongest microwave absorption with the reflection loss (RL) of − 71.9 dB at 9.25 GHz was achieved with a thickness as a thin as 1.97 mm (filled with 35 wt% MCs). The RLmin of paraffin-based composites loaded with 25 wt% MCs with the mean size of 1.29 and 1.48 μm reaches − 50.5 and − 54.0 dB, at 9.44 and 10.64 GHz with a thickness of 2.14 and 1.9 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. X.F. Zhou, B.B. Wang, Z.R. Jia, X.D. Zhang, X.H. Liu, K.K. Wang, B.H. Xu, G.L. Wu, Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance. J. Colloid Interf Sci. 582, 515–525 (2021)

    Article  CAS  Google Scholar 

  2. L.F. Lyu, F.L. Wang, X. Zhang, J. Qiao, C. Liu, J.R. Liu, CuNi alloy/carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon 172, 488–496 (2021)

    Article  CAS  Google Scholar 

  3. L. Lei, Z.J. Yao, J.T. Zhou, W.J. Zheng, B. Wei, J.Q. Zu, K.Y. Yan, Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption. Carbon 173, 69–79 (2021)

    Article  CAS  Google Scholar 

  4. M. Yu, C.Y. Liang, M.M. Liu, X.L. Liu, K.P. Yuan, H. Cao, R.C. Che, Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2, 7275–7283 (2014)

    Article  CAS  Google Scholar 

  5. L.L. Liu, L. Wang, Q.Q. Li, X.F. Yu, X.F. Shi, J.J. Ding, W.B. You, L.T. Yang, Y.H. Zhang, R.C. Che, High-performance microwave absorption of MOF-derived core-shell Co@N-doped carbon anchored on reduced graphene oxide. Chemnanomat 5, 558–565 (2019)

    Article  CAS  Google Scholar 

  6. B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)

    Article  CAS  Google Scholar 

  7. M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)

    Article  CAS  Google Scholar 

  8. J.Q. Wang, H.Y. Yu, Z.T. Yang, A.B. Zhang, Q.Y. Zhang, B.L. Zhang, Tubular carbon nanofibers: synthesis, characterization and applications in microwave absorption. Carbon 152, 255–266 (2019)

    Article  CAS  Google Scholar 

  9. R. Pastore, A. Delfini, D. Micheli, A. Vricella, M. Marchetti, E. Santoni, F. Piergentili, Carbon foam electromagnetic mm-wave absorption in reverberation chamber. Carbon 144, 63–71 (2019)

    Article  CAS  Google Scholar 

  10. Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)

    Article  CAS  Google Scholar 

  11. H.T. Guan, Q.Y. Wang, X.F. Wu, J. Pang, Z.Y. Jiang, G. Chen, C.J. Dong, L.H. Wang, C.H. Gong, Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B-Eng. 207, 108562 (2021)

    Article  CAS  Google Scholar 

  12. T. Li, D.D. Zhi, Y. Chen, B. Li, Z.W. Zhou, F.B. Meng, Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 13, 477–484 (2020)

    Article  CAS  Google Scholar 

  13. H.L. Xu, X.W. Yin, M. Zhu, M.H. Li, H. Zhang, H.J. Wei, L.T. Zhang, L.F. Cheng, Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019)

    Article  CAS  Google Scholar 

  14. Y. Wan, L.N. Zhang, Y.Y. Chen, J.H. Lin, W.D. Hu, S. Wang, J.D. Lin, S.L. Wan, Y. Wang, One-pot synthesis of gluconic acid from biomass-derived levoglucosan using a Au/Cs2.5H0.5PW12O40 catalyst. Green. Chem. 21, 6318–6325 (2019)

    Article  CAS  Google Scholar 

  15. G. Li, T.S. Xie, S.L. Yang, J.H. Jin, J.M. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116, 9196–9201 (2012)

    Article  CAS  Google Scholar 

  16. D.W. Liu, Y.C. Du, F.Y. Wang, Y.H. Wang, L.R. Cui, H.H. Zhao, X.J. Han, MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020)

    Article  CAS  Google Scholar 

  17. M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2, 10540–10547 (2014)

    Article  CAS  Google Scholar 

  18. J. Ouyang, Z.L. He, Y. Zhang, H.M. Yang, Q.H. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 11, 39304–39314 (2019)

    Article  CAS  Google Scholar 

  19. P. Miao, R. Zhou, K.J. Chen, J. Liang, Q.F. Ban, J. Kong, Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology. Adv. Mater. Interfaces 7, 1901820 (2020)

    Article  CAS  Google Scholar 

  20. D.M. Xu, N.N. Wu, K. Le, F.L. Wang, Z. Wang, L.L. Wu, W. Liu, A.C. Ouyang, J.R. Liu, Bimetal oxide-derived flower-like heterogeneous Co/MnO@C composites with synergistic magnetic-dielectric attenuation for electromagnetic wave absorption. J. Mater. Chem. C 8, 2451–2459 (2020)

    Article  CAS  Google Scholar 

  21. Y.H. Wang, X.D. Li, X.J. Han, P. Xu, L.R. Cui, H.H. Zhao, D.W. Liu, F.Y. Wang, Y.C. Du, Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem Eng J 387, 124159 (2020)

    Article  CAS  Google Scholar 

  22. X.Y. Zhu, H.F. Qiu, P. Chen, G.Z. Chen, W.X. Min, Anemone-shaped ZIF-67@CNTs as effective electromagnetic absorbent covered the whole X-band. Carbon 173, 1–10 (2021)

    Article  CAS  Google Scholar 

  23. X. Yan, X.X. Huang, Z. Bo, W. Tong, H.T. Wang, T. Zhang, N.M. Bai, G.P. Zhou, H. Pan, G.W. Wen, L. Xia, Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 391, 123538 (2020)

    Article  CAS  Google Scholar 

  24. L.L. Liang, W.H. Gu, Y. Wu, B.S. Zhang, G.H. Wang, Y. Yang, G.B. Ji, Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022)

    Article  CAS  Google Scholar 

  25. C. Ji, Y. Liu, J. Xu, Y.Y. Li, Y.D. Shang, X.L. Su, Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree. J. Alloy Compd. 890, 161834 (2022)

    Article  CAS  Google Scholar 

  26. Z.Y. Chu, H.F. Cheng, W. Xie, L.K. Sun, Effects of diameter and hollow structure on the microwave absorption properties of short carbon fibers. Ceram. Int. 38, 4867–4873 (2012)

    Article  CAS  Google Scholar 

  27. M. Jadav, S.P. Bhatnagar, Particle size controlled magnetic loss in magnetite nanoparticles in RF-microwave region. IEEE Trans. Magn. 56, 1–8 (2020)

    Article  Google Scholar 

  28. L. Zhou, J.X. Yan, J.L. Huang, H.B. Wang, X.G. Wang, Z.J. Wang, Dielectric and microwave absorption properties of FeSiAl/Al2O3 composites containing FeSiAl particles of different sizes. Ceram. Int. 47, 7831–7836 (2021)

    Article  CAS  Google Scholar 

  29. C.Y. Wang, B. Wu, X. Mao, T. Deng, R. Li, Y. Xu, X.Z. Tang, The effects of concentration and particle size of TiO2 on the dielectric properties of polyolefin-based microwave substrates. Chemistryselect 5, 1464–1469 (2020)

    Article  CAS  Google Scholar 

  30. Q.H. Liu, Q. Cao, X.B. Zhao, H. Bi, C. Wang, D.S. Wu, R.C. Che, Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 7, 4233–4240 (2015)

    Article  CAS  Google Scholar 

  31. H.L. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao, S.B. Xi, Y.H. Du, G.B. Ji, Z.C.J. Xu, A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29, 1900163 (2019)

    Article  CAS  Google Scholar 

  32. J.Q. Tao, J.T. Zhou, Z.J. Yao, Z.B. Jiao, B. Wei, R.Y. Tan, Z. Li, Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 172, 542–555 (2021)

    Article  CAS  Google Scholar 

  33. J.P. Paraknowitsch, J. Zhang, D.S. Su, A. Thomas, M. Antonietti, Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv. Mater. 22, 87 (2010)

    Article  CAS  Google Scholar 

  34. Y. Mao, H. Duan, B. Xu, L. Zhang, Y.S. Hu, C.C. Zhao, Z.X. Wang, L.Q. Chen, Y.S. Yang, Lithium storage in nitrogen-rich mesoporous carbon materials. Energ. Environ. Sci. 5, 7950–7955 (2012)

    Article  CAS  Google Scholar 

  35. S. Gao, G.S. Wang, L. Guo, S.H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16, 190 (2020)

    Article  Google Scholar 

  36. H.Y. Nan, F. Luo, H.Y. Jia, H.J. Pan, Z.B. Huang, H.W. Deng, Y.C. Qing, C.H. Wang, Q. Chen, The effect of temperature on structure and permittivity of carbon microspheres as efficient absorbent prepared by facile and large-scale method. Carbon 185, 650–659 (2021)

    Article  CAS  Google Scholar 

  37. X. Wang, F. Pan, Z. Xiang, Q.W. Zeng, K. Pei, R.C. Che, W. Lu, Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020)

    Article  CAS  Google Scholar 

  38. X.N. Chen, Y. Zhang, R.X. Huang, F.C. Meng, L. Tao, Z.M. Zhao, M.H. Jin, P. Wang, S.B. Zhu, J.C. Sun, Pomegranate like polypyrrole/nanodiamond hierarchical structures for metal-free ultrabroad-band electromagnetic absorptions. Carbon 172, 422–430 (2021)

    Article  CAS  Google Scholar 

  39. M. Zhang, C. Han, W.Q. Cao, M.S. Cao, H.J. Yang, J. Yuan, A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 1–12 (2021)

    Article  CAS  Google Scholar 

  40. Y.P. Duan, Z. Liu, H. Jing, Y.H. Zhang, S.Q. Li, Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 22, 18291–18299 (2012)

    Article  CAS  Google Scholar 

  41. O. Luukkonen, S.I. Maslovski, S.A. Tretyakov, A stepwise Nicolson-Ross-Weir-based material parameter extraction method. IEEE Antenn Wirel Pr 10, 1295–1298 (2011)

    Article  Google Scholar 

  42. Z.C. Lou, R. Li, P. Wang, Y. Zhang, B. Chen, C.X. Huang, C.C. Wang, H. Han, Y.J. Li, Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior. Chem. Eng. J. 391, 123571 (2020)

    Article  CAS  Google Scholar 

  43. M. Rauf, A.M. Khan, A. Ansari, M.T. Jilani, T. Shahzeb, Skin depth verification of the electromagnetic waves for hydrocarbon detection. Int. J. Appl. Electrom 60, 313–326 (2019)

    Google Scholar 

  44. U. Kreibig, Electronic properties of small silver particles: optical-constants and their temperature-dependence. J. Phys. F Met. Phys. 4, 999–1014 (1974)

    Article  CAS  Google Scholar 

  45. P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539–545 (2010)

    Article  CAS  Google Scholar 

  46. L. Wang, X. Li, Q. Li, X.F. Yu, Y.H. Zhao, J. Zhang, M. Wang, R.C. Che, Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15, 1900900 (2019)

    Article  CAS  Google Scholar 

  47. R. Ram, D. Khastgir, M. Rahaman, Electromagnetic interference shielding effectiveness and skin depth of poly(vinylidene fluoride)/particulate nano-carbon filler composites: prediction of electrical conductivity and percolation threshold. Polym. Int. 68, 1194–1203 (2019)

    Article  CAS  Google Scholar 

  48. R. Ram, M. Rahaman, D. Khastgir, Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: modelling of DC conductivity. Compos. Part A-Appl S. 69, 30–39 (2015)

    Article  CAS  Google Scholar 

  49. P.B. Liu, S. Gao, Y. Wang, Y. Huang, F.T. Zhou, P.Z. Liu, Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers. Carbon 173, 655–666 (2021)

    Article  CAS  Google Scholar 

  50. F. Wang, W.H. Gu, J.B. Chen, Q.Q. Huang, M.Y. Han, G.H. Wang, G.B. Ji, Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol. 105, 92–100 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 31800802).

Funding

This work was financially supported by National Natural Science Foundation of China (No. 31800802).

Author information

Authors and Affiliations

Authors

Contributions

HN: Conceptualization, Writing-original Draft, Methodology, Formal analysis. FL: Supervision, Conceptualization, Writing-review & Editing. HJ: Visualization preparation, Revision of writing-original Draft. HD: Validation, Formal analysis. CW: Validation, Formal analysis, Supervision. QC: Validation, Formal analysis.

Corresponding author

Correspondence to Chunhai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2491.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, H., Luo, F., Jia, H. et al. Effect of particle size on dielectric and microwave absorption properties of starch-derived micron-carbon spheres. J Mater Sci: Mater Electron 33, 16488–16500 (2022). https://doi.org/10.1007/s10854-022-08539-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08539-5

Navigation