Skip to main content
Log in

Modified ferroelectricity in multiferroic Ba4Nd2Fe2Nb8O30 ceramics via atmosphere treatment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-phase multiferroic Ba4Nd2Fe2Nb8O30 ceramics with the tetragonal tungsten bronze structure were synthesized. The dielectric, ferroelectric, and magnetic properties were systematically studied at room temperature, and the room-temperature multiferroic features were certified by the polarization–electric field hysteresis loops and magnetization-field curves in Ba4Nd2Fe2Nb8O30 ceramics. Interestingly, it was found that the ferroelectric polarization was enhanced by treating samples in non-oxidizing atmospheres, and the highest remnant polarization of 0.94 μC/cm2 can be found in the N2-annealed samples. The refined neutron powder diffraction results showed that the modified ferroelectricity was originated from the displacement of Fe3+/Nb5+ cations at B-sites rather than the oxygen vacancies. These results indicate that the heat treatment in controlled atmosphere is effective means to improve ferroelectricity in tetragonal tungsten bronze structure ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. W.B. Feng, X.L. Zhu, X.Q. Liu, X.M. Chen, J. Appl. Phys. 124, 104102 (2018). https://doi.org/10.1063/1.5048555

    Article  CAS  Google Scholar 

  2. X.L. Zhu, M.S. Fu, M.C. Stennett, P.M. Vilarinho, I. Levin, C.A. Randall, J. Gardner, F.D. Morrison, I.M. Reaney, Chem. Mater. 27, 3250–3261 (2015). https://doi.org/10.1021/acs.chemmater.5b00072

    Article  CAS  Google Scholar 

  3. X.L. Zhu, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 94, 1829–1836 (2011). https://doi.org/10.1111/j.1551-2916.2010.04327.x

    Article  CAS  Google Scholar 

  4. K. Li, X.L. Zhu, X.Q. Liu, X.M. Chen, Appl. Phys. Lett. 101, 042906 (2012). https://doi.org/10.1063/1.4739841

    Article  CAS  Google Scholar 

  5. D.C. Arnold, F.D. Morrison, J. Mater. Chem. 19, 6485–6488 (2009). https://doi.org/10.1039/B912535C

    Article  CAS  Google Scholar 

  6. S.C. Abrahams, P.B. Jamieson, J.L. Bernstein, J. Chem. Phys. 54, 2355–2364 (1971). https://doi.org/10.1063/1.1675186

    Article  CAS  Google Scholar 

  7. P.B. Jamieson, S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 50, 4352–4363 (1969). https://doi.org/10.1063/1.1670903

    Article  CAS  Google Scholar 

  8. A. Magneli, Arkiv for Kemi. 1, 213–221 (1949)

    CAS  Google Scholar 

  9. M. Josse, O. Bidault, F. Roulland, E. Castel, A. Simon, D. Michau, R. Von der Mühll, O. Nguyen, M. Maglione, Solid State Sci. 11, 1118–1123 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.02.015

    Article  CAS  Google Scholar 

  10. F. Roulland, M. Josse, E. Castel, M. Maglione, Solid State Sci. 11, 1709–1716 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.05.031

    Article  CAS  Google Scholar 

  11. Y.J. Wu, S.P. Gu, Y.Q. Lin, Z.J. Hong, X.Q. Liu, X.M. Chen, Ceram. Int. 36, 2415–2420 (2010). https://doi.org/10.1016/j.ceramint.2010.07.022

    Article  CAS  Google Scholar 

  12. Y.J. Wu, Z.J. Hong, Y.Q. Lin, S.P. Gu, X.Q. Liu, X.M. Chen, J. Appl. Phys. 108, 014111 (2010). https://doi.org/10.1063/1.3459887

    Article  CAS  Google Scholar 

  13. T. Hajlaoui, M. Josse, C. Harnagea, A. Pignolet, Mater. Res. Bull. 86, 30–37 (2017). https://doi.org/10.1016/j.materresbull.2016.10.004

    Article  CAS  Google Scholar 

  14. M.C. Stennett, I.M. Reaney, G.C. Miles, D.I. Woodward, A.R. West, C.A. Kirk, I. Levin, J. Appl. Phys. 101, 104114 (2007). https://doi.org/10.1063/1.2205720

    Article  CAS  Google Scholar 

  15. I. Levin, M.C. Stennett, G.C. Miles, D.I. Woodward, A.R. West, I.M. Reaney, Appl. Phys. Lett. 89, 122908 (2006). https://doi.org/10.1063/1.2355434

    Article  CAS  Google Scholar 

  16. X.L. Zhu, B.L. Deng, X.Q. Liu, X.M. Chen, RSC Adv. 7, 27370–27376 (2017). https://doi.org/10.1039/C7RA03870D

    Article  Google Scholar 

  17. Z. Guo, Q.H. Zhu, S. Wu, C.Z. Hu, L.J. Liu, L. Fang, Ceram. Int. 44, 7700–7708 (2018). https://doi.org/10.1016/j.ceramint.2018.01.196

    Article  CAS  Google Scholar 

  18. J.S. Hong, Y.H. Huang, Y.J. Wu, M.S. Fu, J. Li, X.Q. Liu, J. Appl. Phys. 124, 064105 (2018). https://doi.org/10.1063/1.5041072

    Article  CAS  Google Scholar 

  19. R.B. Von Dreele, J.D. Jorgensen, C.G. Windsor, J. Appl. Cryst. 15, 581–589 (1982). https://doi.org/10.1107/S0021889882012722

    Article  Google Scholar 

  20. J. Zhang, Y. Xia, Y. Wang, C. Xie, G. Sun, L. Liu, B. Pang, J. Li, C. Huang, Y. Liu, J. Gong, JINST 13, T01009 (2018). https://doi.org/10.1088/1748-0221/13/01/T01009

    Article  Google Scholar 

  21. J. Rodríguez-Carvajal, Physica B 192, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  22. I. Fina, L. Fàbrega, E. Langenberg, X. Martí, F. Sánchez, M. Varela, J. Fontcuberta, J. Appl. Phys. 109, 074105 (2011). https://doi.org/10.1063/1.3555098

    Article  CAS  Google Scholar 

  23. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (No. 2018YFC0114902), the National Natural Science Foundation of China (No. 51572237, 51802280, 51772266), Natural Science Foundation of Zhejiang Province (No. LZ17E020003), the 111 Project (No. B16042), and the Fundamental Research Funds for the Central Universities (No. 2017XZZX001-04, 2017QNA4011).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by CL, JSH, YHH, XM, MSF, JL, XQL, and YJW. The first draft of the manuscript was written by CL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao Qiang Liu.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hong, J.S., Huang, Y.H. et al. Modified ferroelectricity in multiferroic Ba4Nd2Fe2Nb8O30 ceramics via atmosphere treatment. J Mater Sci: Mater Electron 33, 16414–16424 (2022). https://doi.org/10.1007/s10854-022-08535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08535-9

Navigation