Skip to main content
Log in

Influence mechanism of nano-TiO2 dispersion on thermoelectric properties of BiCuSeO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence mechanism of Nano-TiO2 on the electrical and thermal transporting properties of BiCuSeO ceramics has been investigated. BiCuSeO matrix powders and nano-TiO2 powders were mixed by high-energy mechanical alloying, and then sintered by spark plasma method. The results of micro-morphology tests indicated that the nano-TiO2 particles were distributed on the surface and interior of the matrix. Due to the low electrical conductivity (σ) of TiO2, the σ of the dispersed sample decreased slightly after the compositing. For the energy filtering effect and the decrease of carrier concentration caused by the nano-TiO2 particles, the Seebeck coefficient increases in the whole temperature zone from room temperature to 873 K. For that the average free path of phonons decreased due to the nano dispersed particles, the thermal conductivity decreased correspondingly. Through the dispersion of nano-TiO2, the electron/phonon transporting of BiCuSeO has reached a better balance, and the thermoelectric properties improved significantly with the largest ZT of ~ 1.204 at 873 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren et al., Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2(5), 466–479 (2009)

    Article  CAS  Google Scholar 

  2. D. Wang, X. Ling, H. Peng et al., Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation. Energy 50, 343–352 (2013)

    Article  Google Scholar 

  3. J. Eakburanawat, I. Boonyaroonate, Development of a thermoelectric battery-charger with microcontroller-based maximum power point tracking technique. Appl. Energy 83(7), 687–704 (2006)

    Article  CAS  Google Scholar 

  4. U. Tomc, J. Tu, A. Kitanovski et al., A new magnetocaloric refrigeration principle with solid-state thermoelectric thermal diodes. Appl. Therm. Eng. 58(1–2), 1–21 (2013)

    Article  Google Scholar 

  5. S. Fu, Z. Cao, X. Quan et al., A broadband dual-polarized notched-band antenna for 2/3/4/5G base station. IEEE Antenna Wirel. Propag. Lett. 19(1), 69–73 (2020)

    Article  Google Scholar 

  6. Y. Xu, J. Han, Y. Luo et al., Enhanced CO2 reduction performance of BiCuSeO-based hybrid catalysts by synergetic photo-thermoelectric effect. Adv. Funct. Mater. 31(38), 2105001 (2021)

    Article  CAS  Google Scholar 

  7. H. Xie, H. Wang, C. Fu et al., The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci. Rep. 4, 6888 (2016)

    Article  Google Scholar 

  8. F. Li, J.F. Li, L.D. Zhao et al., Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ. Sci. 5(5), 7188–7195 (2012)

    Article  CAS  Google Scholar 

  9. L.D. Zhao, J. He, D. Berardan et al., BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci. 7(9), 2900–2924 (2014)

    Article  CAS  Google Scholar 

  10. B. Feng, G. Li, Y. Hou et al., Enhanced thermoelectric properties of Sb-doped BiCuSeO due to decreased band gap. J. Alloys Compd. 712, 386–393 (2017)

    Article  CAS  Google Scholar 

  11. J.L. Lan, B. Zhan, Y.C. Liu et al., Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Appl. Phys. Lett. 102(12), 66 (2013)

    Article  Google Scholar 

  12. F. Li, Z. Zheng, Y. Chang et al., Synergetic tuning of the electrical and thermal transport properties via Pb/Ag dual doping in BiCuSeO. ACS Appl. Mater. Interface 11(49), 45737–45745 (2019)

    Article  CAS  Google Scholar 

  13. Y.C. Liu, J.L. Lan, B. Zhan et al., Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv. Mater. 96(9), 2710–2713 (2013)

    CAS  Google Scholar 

  14. Y.L. Pei, J. He, J.F. Li et al., High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Mater. 5(3), e47 (2013)

    Article  CAS  Google Scholar 

  15. M.V. Malashchonak, E.A. Streltsov, G.A. Ragoisha et al., Evaluation of electroactive surface area of CdSe nanoparticles on wide bandgap oxides (TiO2, ZnO) by cadmium underpotential deposition. Electrochem. Commun. 72, 176–180 (2016)

    Article  CAS  Google Scholar 

  16. A. Soni, Y. Shen, M. Yin et al., Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett. 12(8), 4305–4310 (2012)

    Article  CAS  Google Scholar 

  17. T.H. Zou, X.Y. Qin, D. Li et al., Enhanced thermoelectric performance via carrier energy filtering effect in β-Zn4Sb3 alloy bulk embedded with (Bi2Te3)0.2 (Sb2Te3)0.8. J. Appl. Phys. 115(5), 053710 (2014)

    Article  Google Scholar 

  18. S. Hida, T. Hori, T. Shiga et al., Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. Int. J. Heat Mass Tran. 67, 1024–1029 (2013)

    Article  CAS  Google Scholar 

  19. H. Choi, K. Jeong, J. Chae et al., Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface. Nano Energy 47, 374–384 (2018)

    Article  CAS  Google Scholar 

  20. B. Feng, G. Li, X. Hu et al., Improvement of thermoelectric and mechanical properties of BiCuSeO-based materials by SiC nanodispersion. J. Alloys Compd. 818, 152899 (2020)

    Article  CAS  Google Scholar 

  21. B. Feng, G. Li, Z. Pan et al., Enhanced thermoelectric performances in BiCuSeO oxyselenides via Er and 3D modulation doping. Ceram. Int. 45(4), 4493–4498 (2019)

    Article  CAS  Google Scholar 

  22. B. Feng, X. Jiang, Z. Pan et al., Preparation, structure, and enhanced thermoelectric properties of Sm-doped BiCuSeO oxyselenide. Mater. Des. 185, 108263 (2020)

    Article  CAS  Google Scholar 

  23. X. Ma, Y. Dai, L. Yu et al., New basic insights into the low hot electron injection efficiency of gold-nanoparticle-photosensitized titanium dioxide. ACS Appl. Mater. Interface 6(15), 12388–12394 (2014)

    Article  CAS  Google Scholar 

  24. J.B. Fogagnolo, F. Velasco, M.H. Robert et al., Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Mater. Sci. Eng. A 342(1–2), 131–143 (2003)

    Article  Google Scholar 

  25. R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez et al., Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 615, S578–S582 (2014)

    Article  Google Scholar 

  26. W. Pan, H. Wu, J. Luo et al., Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photon. 11(11), 726–732 (2017)

    Article  CAS  Google Scholar 

  27. S. Tie, W. Zhao, D. Xin et al., Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Adv. Mater. 32(31), 2001981 (2020)

    Article  CAS  Google Scholar 

  28. D. Yan, Y. Li, J. Huo et al., Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29(48), 1606459 (2017)

    Article  Google Scholar 

  29. D.S. McLachlan, M. Blaszkiewicz, R.E. Newnham, Electrical resistivity of composites. J. Am. Ceram. Soc. 73(8), 2187–2203 (1990)

    Article  CAS  Google Scholar 

  30. Q. Deng, W. Zhang, T. Lan et al., Anatase TiO2 quantum dots with a narrow band gap of 2.85 eV based on surface hydroxyl groups exhibiting significant photodegradation property. Eur. J. Inorg. Chem. 2018(13), 1506–1510 (2018)

    Article  CAS  Google Scholar 

  31. G. Bahmanrokh, C. Cazorla, S.S. Mofarah et al., Band gap engineering of Ce-doped anatase TiO2 through solid solubility mechanisms and new defect equilibria formalism. Nanoscale 12(8), 4916–4934 (2020)

    Article  CAS  Google Scholar 

  32. J.D. Yuen, J. Fan, J. Seifter et al., High performance weak donor–acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J. Am. Chem. Soc. 133(51), 20799–20807 (2011)

    Article  CAS  Google Scholar 

  33. M. Liu, X.Y. Qin, Enhanced thermoelectric performance through energy-filtering effects in nanocomposites dispersed with metallic particles. Appl. Phys. Lett. 101(13), 132103 (2012)

    Article  Google Scholar 

  34. Y.P. Mamunya, V.V. Davydenko, P. Pissis et al., Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 38(9), 1887–1897 (2002)

    Article  CAS  Google Scholar 

  35. M. Asheghi, Y.K. Leung, S.S. Wong et al., Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71(13), 1798–1800 (1997)

    Article  CAS  Google Scholar 

  36. Z.H. Ge, D. Song, X. Chong et al., Boosting the thermoelectric performance of (Na, K)-codoped polycrystalline SnSe by synergistic tailoring of the band structure and atomic-scale defect phonon scattering. J. Am. Chem. Soc. 139(28), 9714–9720 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Natural Science Foundation of Hubei Province (2021CFB009), 2021 Hubei Province supporting enterprise technological innovation and development project (2021BAB064), and the School youth fund of Wuhan Donghu University. Thank my tutors Professor Fan Xi'an and Professor Li Guangqiang for their guidance. Thank my wife Wang Wei for her support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by BF and YL. The first draft of the manuscript was written by BF, revised by YT, and all authors have approved the final manuscript.

Corresponding author

Correspondence to Bo Feng.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Liu, Y. & Tang, Y. Influence mechanism of nano-TiO2 dispersion on thermoelectric properties of BiCuSeO. J Mater Sci: Mater Electron 33, 16396–16405 (2022). https://doi.org/10.1007/s10854-022-08531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08531-z

Navigation