Skip to main content

Advertisement

Log in

Construction of high-performance Li-rich Mn-based cathodes assisted by a novel water-soluble LiPAA binder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, all types of electrical equipment put forward increasing requirements on the energy density of secondary rechargeable batteries. The low specific capacity of cathode material is the primary factor that restricts the energy density of Li-ion batteries. Li-rich Mn-based cathode materials have the advantages of high specific capacity, high operating voltage, low cost, and environmental friendliness. However, they have the limitations of low first Coulombic efficiency and serious capacity/voltage attenuation. In this work, lithium polyacrylate (LiPAA) has been employed as a water-soluble binder in the electrode to develop a high-performance Li-rich Mn-based cathode. The effect of the LiPAA binder on voltage drop and electrochemical performance of Li[Li0.2Co0.13Ni0.13Mn0.54]O2 cathode has been examined to reveal the modification mechanism. The results show that carboxyl group (–COOH) in the LiPAA structure can form strong hydrogen bonds with the oxygen atoms in the active material, making the electrode components firmly bonded and thus maintaining the structural stability of the cathode upon cycling. Moreover, the LiPAA binder can effectively inhibit voltage drop of Li[Li0.2Co0.13Ni0.13Mn0.54]O2. The discharge voltage of the electrode decreases by only 117 mV after 50 cycles. Green water-soluble LiPAA has broad prospective applications as a binder of electrode materials of secondary batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.H. Ahn, H.M. Kim, Y.J. Lee, D. Esken, D. Dehe, H.A. Song, D.W. Kim, J. Power Sources 506, 230119 (2021)

    Article  CAS  Google Scholar 

  2. J.Y. Eom, L. Cao, J. Power Sources 441, 227178 (2019)

    Article  CAS  Google Scholar 

  3. T.C. Nirmale, B.B. Kale, A.J. Varma, J. Biol. Macromol. 103, 1032–1043 (2017)

    Article  CAS  Google Scholar 

  4. Y. Liu, Z. Yang, J. Zhong, J. Li, R. Li, Y. Yu, F. Kang, ACS Nano 13, 11891–11900 (2019)

    Article  CAS  Google Scholar 

  5. J. Zhao, X. Kuai, X. Dong, H. Wang, W. Zhao, L. Gao, Y. Wang, R. Huang, J. Alloys Compd. 732, 385–395 (2018)

    Article  CAS  Google Scholar 

  6. Y. Zuo, B. Li, N. Jiang, W. Chu, H. Zhang, R. Zou, D. Xia, Adv. Mater. 30, 1707255 (2018)

    Article  CAS  Google Scholar 

  7. Y. Fan, W. Zhang, Y. Zhao, Z. Guo, Q. Cai, Energy Stor. Mater. 40, 51–71 (2021)

    Article  Google Scholar 

  8. Z. Wu, H. Xie, Y. Li, F. Zhang, Z. Wang, W. Zheng, M. Yang, Z. Xu, Z. Lu, J. Alloys Compd. 827, 154202 (2020)

    Article  CAS  Google Scholar 

  9. Z. Liao, J. Kang, Q. Luo, C. Pan, J. Chen, X. Mo, H. Zou, W. Yang, S. Chen, Acta Metall. Sin. 35, 985–995 (2022)

    Article  CAS  Google Scholar 

  10. Y. Zhang, Q. Song, Q. Zhao, R. Zhang, J. Zhao, Energy Technol. 9, 2000894 (2021)

    Article  CAS  Google Scholar 

  11. S. Dong, Y. Zhou, C. Hai, J. Zeng, Y. Sun, Y. Shen, X. Li, X. Ren, C. Sun, G. Zhang, Z. Wu, J. Power Sources 462, 228185 (2020)

    Article  CAS  Google Scholar 

  12. X. Fan, Z. Wang, T. Cai, Y. Yang, H. Wu, S. Cao, Z. Yang, W. Zhang, Carbon 182, 749–757 (2021)

    Article  CAS  Google Scholar 

  13. Z. Wang, T. Huang, Z. Liu, A. Yu, Electrochim. Acta 389, 138806 (2021)

    Article  CAS  Google Scholar 

  14. T. Lombardo, A.C. Ngandjong, A. Belhcen, A.A. Franco, Energy Stor. Mater. 43, 337–347 (2021)

    Article  Google Scholar 

  15. E. Zhen, J. Jiang, C. Lv, X. Huang, H. Xu, H. Dou, X. Zhang, J. Power Sources 515, 230644 (2021)

    Article  CAS  Google Scholar 

  16. N. Lingappan, L. Kong, M. Pecht, Renew. Sust. Energ. Rev. 147, 111227 (2021)

    Article  CAS  Google Scholar 

  17. L. Wei, C. Chen, Z. Hou, H. Wei, Sci. Rep. 6, 19583 (2016)

    Article  CAS  Google Scholar 

  18. B. Hu, I.A. Shkrob, S. Zhang, L. Zhang, J. Zhang, Y. Li, C. Liao, Z. Zhang, W. Lu, L. Zhang, J. Power Sources 378, 671–676 (2018)

    Article  CAS  Google Scholar 

  19. C.C. Li, J.T. Lee, C.Y. Lo, M.S. Wu, ECS Solid State Lett. 8, A509–A512 (2005)

    Article  CAS  Google Scholar 

  20. B.L. Armstrong, K.A. Hays, R.E. Ruther, W.B. Hawley, A. Rogers, I. Greeley, K.A. Cavallaro, G.M. Veith, J. Power Sources 517, 230671 (2022)

    Article  CAS  Google Scholar 

  21. A. Su, Q. Pang, X. Chen, J. Dong, Y. Zhao, R. Lian, D. Zhang, B. Liu, G. Chen, Y. Wei, J. Mater. Chem. A 6, 23357–23365 (2018)

    Article  CAS  Google Scholar 

  22. X. Fan, F. Chen, Y. Zhang, R. Lin, C. Lin, L. Zhan, X. Xu, L. Ma, L. Xu, X. Zhou, Nanotechnology 31, 095401 (2019)

    Article  CAS  Google Scholar 

  23. B. Çetin, Z. Camtakan, N. Yuca, Mater. Lett. 273, 127927 (2020)

    Article  CAS  Google Scholar 

  24. M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, S.A. Hackney, Electrochem Commun. 8, 1531–1538 (2006)

    Article  CAS  Google Scholar 

  25. H. Deng, I. Belharouak, C.S. Yoon, Y.K. Sun, K. Amine, J. Electrochem. Soc. 157, A1035 (2010)

    Article  CAS  Google Scholar 

  26. Q. Luo, J. Kang, Z. Liao, X. Feng, H. Zou, W. Yang, C. Pai, R. Waiyin Sun, S. Chen, ACS Appl. Energy Mater. 5, 4641–4650 (2022)

    Article  CAS  Google Scholar 

  27. Z. Wu, Y. Cheng, Y. Shi, M. Xia, Y. Zhang, X. Hu, X. Zhou, Y. Chen, J. Sun, Y. Liu, J. Colloid Interface Sci. 620, 57–66 (2022)

    Article  CAS  Google Scholar 

  28. J. Chen, Z. Huang, W. Zeng, J. Ma, F. Cao, T. Wang, W. Tian, S. Mu, J. Colloid Interface Sci. 14, 6649–6657 (2022)

    CAS  Google Scholar 

  29. C.J. Jafta, K.I. Ozoemena, M.K. Mathe, W.D. Roos, Electrochim. Acta 85, 411–422 (2012)

    Article  CAS  Google Scholar 

  30. H. Xu, L. Ai, J. Yan, G. Yan, W. Zhang, Ceram. Int. 45, 23089–23096 (2019)

    Article  CAS  Google Scholar 

  31. T. Zhao, Y. Meng, R. Ji, F. Wu, L. Li, R. Chen, J. Alloys Compd. 811, 1–13 (2019)

    Article  CAS  Google Scholar 

  32. S. Zhao, Z. Guo, K. Yan, S. Wan, F. He, B. Sun, G. Wang, Energy Stor. Mater. 34, 716–734 (2021)

    Article  Google Scholar 

  33. X. Fu, L. Scudiero, W.-H. Zhong, J. Mater. Chem. A 7, 1835–1848 (2019)

    Article  CAS  Google Scholar 

  34. J. Yang, P. Li, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, D. Xia, Y. Cao, Adv. Energy Mater. 10, 1904264 (2020)

    Article  CAS  Google Scholar 

  35. S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Angew. Chem. Int. Ed. 60, 2208–2220 (2021)

    Article  CAS  Google Scholar 

  36. L. Wang, K. Du, C. Yang, J. Teng, L. Fu, Y. Guo, Z. Zhang, X. Han, Nat. Commun. 11, 1167 (2020)

    Article  CAS  Google Scholar 

  37. L. Wang, P. Guan, J. Teng, P. Liu, D. Chen, W. Xie, D. Kong, S. Zhang, T. Zhu, Z. Zhang, E. Ma, M. Chen, X. Han, Nat. Commun. 8, 2142 (2017)

    Article  CAS  Google Scholar 

  38. S. Sun, D. Li, C. Yang, L. Fu, D. Kong, Y. Lu, Y. Guo, D. Liu, P. Guan, Z. Zhang, J. Chen, W. Ming, L. Wang, X. Han, Phys. Rev. Lett. 128, 015701 (2022)

    Article  CAS  Google Scholar 

  39. Y. Min, L. Guo, G. Wei, D. Xian, B. Zhang, L. Wang, Chem. Eng. J. 443, 136480 (2022)

    Article  CAS  Google Scholar 

  40. T. Zhao, L. Chang, R. Ji, Funct. Mater. Lett. 14, 2150004 (2021)

    Article  CAS  Google Scholar 

  41. G. Zhang, B. Qiu, Y. Xia, X. Wang, Q. Gu, Y. Jiang, Z. He, Z. Liu, J. Power Sources 420, 29–37 (2019)

    Article  CAS  Google Scholar 

  42. Z. Yin, T. Zhang, S. Zhang, Y. Deng, X. Peng, J. Wang, J. Li, L. Huang, H. Zheng, S. Sun, Electrochim. Acta 351, 136401 (2020)

    Article  CAS  Google Scholar 

  43. J. Liu, J. Wang, Y. Ni, Y. Zhang, J. Luo, F. Cheng, J. Chen, Small Methods 3, 1900350 (2019)

    Article  CAS  Google Scholar 

  44. Y. Zhu, N. Zhang, L. Zhao, J. Xu, Z. Liu, Y. Liu, J. Wu, F. Ding, J. Alloys Compd. 811, 152023 (2019)

    Article  CAS  Google Scholar 

  45. A.N. Preman, H. Lee, J. Yoo, I.T. Kim, T. Saito, S.-K. Ahn, J. Mater. Chem. A 8, 25548–25570 (2020)

    Article  CAS  Google Scholar 

  46. K.K. Rajeev, E. Kim, J. Nam, S. Lee, J. Mun, T.-H. Kim, Electrochim. Acta 333, 135532 (2020)

    Article  CAS  Google Scholar 

  47. W. Huang, W. Wang, Y. Wang, Q. Qu, C. Jin, H. Zheng, J. Mater. Chem. A 9, 1541–1551 (2021)

    Article  CAS  Google Scholar 

  48. M.H. Ryou, J. Kim, I. Lee, S. Kim, Y.K. Jeong, S. Hong, J.H. Ryu, T.-S. Kim, J.-K. Park, H. Lee, J.W. Choi, Adv. Mater. 25, 1571–1576 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51902213), the Natural Science Foundation of Hebei Education Department (BJ2020046), and the Nature Science Foundation of Hebei Province (B2019210358).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by LC, RJ, and XJ. The first draft of the manuscript was written by TZ and YZ. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Taolin Zhao or Yuxia Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 754 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Chang, L., Ji, R. et al. Construction of high-performance Li-rich Mn-based cathodes assisted by a novel water-soluble LiPAA binder. J Mater Sci: Mater Electron 33, 16383–16395 (2022). https://doi.org/10.1007/s10854-022-08530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08530-0

Navigation