Skip to main content
Log in

Optical limiting and nonlinear optical properties of silver nanoparticles embedded glasses containing rare-earth ions at 532 nm under nanosecond regime

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Efficacy of silver nanoparticles concentration and annealing durations on optical limiting and optical nonlinearities of borate based glasses bearing the composition (79.5–x)B2O3–15Na2O–5La2O3–0.5Sm2O3xAgCl (mol%) was assessed by Z-scan approach under the pumping of visible light (532 nm) in nanosecond regime. The dual photon absorption parameter (α2) was elevated from 0.576 × 10−11 to 1.201 × 10−11 m/W with AgCl content from 0 to 0.5 mol%. This α2 further raised to 1.964 × 10−11 m/W when the optimized glass host heat treated at 450° C for 25 h. Similarly, the index of nonlinear refraction (n2) was enhanced from 1.642 × 10−19 to 2.532 × 10−19 m2/W as the AgCl content increased from 0 to 0.5 mol%. This n2 value in turn monotonously increased to 2.963 × 10−19 m2/W when optimized glass system annealed at 450° C for 25 h. The optical limiting threshold magnitude followed reverse trend compared to α2 and n2. The enhancement in nonlinear optical features and optical limiting efficiencies were related to field stimulated by Ag0 nanoparticles when excited with high energy radiation. However, the non-uniform local field generated when the glass nanocomposites heated for longer duration resulted the switching of nonlinear absorption. The nonlinear optical and optical limiting results infer the 0.5 mol% AgCl encompassing glass sample annelaed at 450 °C for 25 h is benificail for construction of power optical limiters to operate in the visible range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. X. Sun, X. Hu, J. Sun, Z. Xie, S. Zhou, New. J. Chem. 43, 6274 (2019)

    Article  CAS  Google Scholar 

  2. C. Zhang, Y. Song, X. Wang, F.E. Kühn, Y. Wang, Y. Xu, X. Xin, J. Mater. Chem. 13, 571 (2003)

    Article  CAS  Google Scholar 

  3. K. Sridharan, P. Sreekanth, T.J. Park, R. Philip, J. Phys. Chem. C 119, 16314 (2015)

    Article  CAS  Google Scholar 

  4. S. Porel, N. Venkatram, D.N. Rao, T.P. Radhakrishnan, J. Nanosci. Nanotechnol 7, 1887 (2007)

    Article  CAS  Google Scholar 

  5. S. Porel, N. Venkatram, D.N. Rao, T.P. Radhakrishnan, J. Appl. Phys. 102, 033107 (2007)

    Article  Google Scholar 

  6. B. Karthikeyan, M. Anija, R. Philip, Appl. Phys. Lett. 88, 053104 (2006)

    Article  Google Scholar 

  7. Z. Shi, N. Dong, D. Zhang, X. Jiang, G. Du, S. Lv, J. Chen, J. Wang, S. Zhou, J. Am. Ceram. Soc. 102, 3965 (2019)

    Article  CAS  Google Scholar 

  8. G. Jagannath, A. Gaddam, S.V. Rao, D.A. Agarkov, G.M. Korableva, M. Ghosh, K.K. Dey, J.M.F. Ferreira, A.R. Allu, Scr. Mater. 211, 114530 (2022)

    Article  CAS  Google Scholar 

  9. G. Jagannath, B. Eraiah, A. Gaddam, H. Fernandes, D. Brazete, K. Jayanthi, K.N. Krishnakanth, S. Venugopal Rao, J.M.F. Ferreira, K. Annapurna, A.R. Allu, J. Phys. Chem. C 123, 5591 (2019)

    Article  CAS  Google Scholar 

  10. K. Nanda, R.S. Kundu, S. Sharma, D. Mohan, R. Punia, N. Kishore, Solid State Sci. 45, 15 (2015)

    Article  CAS  Google Scholar 

  11. P. Ramesh, V. Hegde, A.G. Pramod, B. Eraiah, S.V. Rao, S. Shisina, S. Das, D.A. Agarkov, G.M. Eliseeva, G. Jagannath, M.K. Kokila, Opt. Mater. 108, 110051 (2020)

    Article  CAS  Google Scholar 

  12. G. Jagannath, B. Eraiah, K. NagaKrishnakanth, S. Venugopal Rao, J. Non Cryst. Solids 482, 160 (2018)

    Article  CAS  Google Scholar 

  13. G. Jagannath, B. Eraiah, K. Jayanthi, S.R. Keshri, S. Som, G. Vinitha, A.G. Pramod, K.N. Krishnakanth, G. Devarajulu, S. Balaji, S. Venugopal Rao, K. Annapurna, S. Das, A.R. Allu, Phys. Chem. Chem. Phys. 22, 2019 (2020)

    Article  CAS  Google Scholar 

  14. G. Jagannath, A.G. Pramod, K. Keshavamurthy, B.N. Swetha, B. Eraiah, R. Rajaramakrishna, P. Ramesh, H. Vinod, S.C. Prashantha, A.M.S. Alhuthali, M.I. Sayyed, Optik 232, 166563 (2021)

    Article  Google Scholar 

  15. M.M. Hivrekar, G. Jagannath, A.G. Pramod, D.A. Aloraini, A.H. Almuqrin, M.I. Sayyed, K. Keshavamurthy, V. Hegde, K.N. Sathish, U. Mahaboob Pasha, S. Venugopal Rao, S. Yasmin, K.M. Jadhav, Opt. Mater. 127, 112313 (2022)

    Article  Google Scholar 

  16. A.H. Almuqrin, J. Gangareddy, M.M. Hivrekar, A.G. Pramod, M.I. Sayyed, K. Keshavamurthy, N. Fatima, K.M. Jadhav, Mater. 15, 2330 (2022)

    Article  CAS  Google Scholar 

  17. R. Miedzinski, I. Fuks-Janczarek, L.R.P. Kassab, F.A. Bomfim, Mater. Res. Bull. 95, 339 (2017)

    Article  CAS  Google Scholar 

  18. K. Keshavamurthy, B.N. Swetha, F.F. Al–Harbi, J.G.,A.H. Almuqrin, M.I. Sayyed, S. Ben Ahmed, A.G. Pramod, S. Itigi, R. P, D.R. Patwari, N.L. Murthy, K.N. Sathish, S.V. Rao, Opt. Mater. 111804 (2021)

  19. K. Keshavamurthy, B.N. Swetha, K.N. Sathish, A.G. Pramod, I. Kebaili, M.I. Sayyed, S. Itigi, P. Ramesh, V. Hegde, N. Linga Murthy, S. Venugopal Rao, G. Jagannath, Infrared Phys. Technol. 119, 103959 (2021)

    Article  CAS  Google Scholar 

  20. N. Fatima, K.N. Sathish, A.G. Pramod, V. Hegde, M.M. Hivrekar, K. Keshavamurthy, B.N. Swetha, P. Ramesh, B. Albarzan, A.H. Almuqrin, M.I. Sayyed, Y.F. Nadaf, G. Jagannath, J. Non Cryst. Solids 576, 121250 (2022)

    Article  CAS  Google Scholar 

  21. B.N. Swetha, K. Keshavamurthy, A.G. Pramod, G. Devarajulu, K.P. Roopa, D. Rajeshree Patwari, I. Kebaili, S. ben Ahmed, M.I. Sayyed, S. Khan, P. Ramesh, K.N. Sathish, N. Fatima, K. Annapurna, G. Jagannath, J. Non Cryst. Solids 579, 121371 (2022)

    Article  CAS  Google Scholar 

  22. J. Gangareddy, E. Bheemaiah, V. Gandhiraj, J.T. James, J.K. Jose, K. Katturi, Naga, V.R. Soma, Appl. Phys. B Lasers Opt. 124, 205 (2018)

    Article  Google Scholar 

  23. N. Fatima, A.G. Pramod, G. Jagannath, R. Rajaramakrishna, K. Keshavamurthy, P. Ramesh, K.N. Sathish, A.M.S. Alhuthali, M.I. Sayyed, V. Hegde, S.V. Rao, Y.F. Nadaf, Ceram. Int. 47, 16801 (2021)

    Article  CAS  Google Scholar 

  24. A. Jagannathan, R. Rajaramakrishna, K.M. Rajashekara, J. Gangareddy, V. Pattar, K.S. Venugopal Rao, B. Eraiah, A.V. Jagadeesha, J. Kaewkhao, S. Kothan, J. Non Cryst. Solids 538, 120010 (2020)

    Article  CAS  Google Scholar 

  25. P. Kumar, M. Chandra Mathpal, J. Prakash, G. Jagannath, W.D. Roos, H.C. Swart, Mater. Res. Bull. 125, 110799 (2020)

    Article  CAS  Google Scholar 

  26. S.K. Ghoshal, A. Awang, M.R. Sahar, R. Arifin, J. Lumin. 159, 265 (2015)

    Article  CAS  Google Scholar 

  27. I. Soltani, S. Hraiech, K. Horchani-Naifer, H. Elhouichet, M. Férid, Opt. Mater. 46, 454 (2015)

    Article  CAS  Google Scholar 

  28. B.N. Swetha, K. Keshavamurthy, G. Gupta, D.A. Aloraini, A.H. Almuqrin, M.I. Sayyed, G. Jagannath, Ceram. Int. 47, 21212 (2021)

    Article  CAS  Google Scholar 

  29. B.N. Swetha, G. Devarajulu, K. Keshavamurthy, G. Jagannath, H.R. Deepa, J. Alloys Compd. 856, 158212 (2021)

    Article  CAS  Google Scholar 

  30. M. Saad, W. Stambouli, S.A. Mohamed, H. Elhouichet, J. Alloys Compd. 705, 550 (2017)

    Article  CAS  Google Scholar 

  31. R. Vijayakumar, K. Marimuthu, J. Alloys Compd. 665, 294 (2016)

    Article  CAS  Google Scholar 

  32. B. Karthikeyan, M. Anija, C.S. Suchand Sandeep, T.M. Muhammad, Nadeer, R. Philip, Opt. Commun. 281, 2933 (2008)

    Article  CAS  Google Scholar 

  33. F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, Appl. Phys. A 1988 474 47, 347 (1988)

    Article  Google Scholar 

  34. X. Feng, Z. Shi, J. Chen, T. Yu, X. Jiang, G. Du, J. Qiu, S. Zhou, Adv. Opt. Mater. 8, 1902143 (2020)

    Article  CAS  Google Scholar 

  35. T.A. Hegde, A. Dutta, T.C. Sabari Girisun, M. Abith, G. Vinitha, J. Mater. Sci. Mater. Electron. 30, 18885 (2019)

    Article  CAS  Google Scholar 

  36. R. Divya, N. Manikandan, T.C. Sabari, Girisun, G. Vinitha, Opt. Mater. (Amst) 100, 109641 (2020)

    Article  CAS  Google Scholar 

  37. C. Babeela, N.K.S. Narendran, M. Pannipara, A.G. Al-Sehemi, T.C. Sabari, Girisun, Mater. Chem. Phys. 237, 121827 (2019)

    Article  CAS  Google Scholar 

  38. L. Polavarapu, V. Mamidala, Z. Guan, W. Ji, Q.H. Xu, Appl. Phys. Lett. 100, 023106 (2012)

    Article  Google Scholar 

  39. L. Polavarapu, N. Venkatram, W. Ji, Q.H. Xu, ACS Appl. Mater. Interfaces 1, 2298 (2009)

    Article  CAS  Google Scholar 

  40. Q. Liu, X. He, X. Zhou, F. Ren, X. Xiao, C. Jiang, H. Zhou, X. Zhao, L. Lu, S. Qian, J. Non. Cryst. Solids (North-Holland, 2011), pp. 2320–2323

  41. Y. Al–Hadeethi, M.I. Sayyed, A.Z. Barasheed, M. Ahmed, G. Jagannath, Opt. Mater. (Amst) 125, 112106 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AHA: Conceptualization, Writing–Original Draft and Editing, MIS: Data curation, Writing–Review and Editing, AGP: Data Curation, Software handling, KK: Data curation, and GJ: Conceptualization, Methodology, Data Curation, Writing–Review and Editing.

Corresponding author

Correspondence to Gangareddy Jagannath.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almuqrin, A.H., Sayyed, M.I., Pramod, A.G. et al. Optical limiting and nonlinear optical properties of silver nanoparticles embedded glasses containing rare-earth ions at 532 nm under nanosecond regime. J Mater Sci: Mater Electron 33, 16357–16368 (2022). https://doi.org/10.1007/s10854-022-08527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08527-9

Navigation