Skip to main content
Log in

Preparation, structural, optical characteristics, and photon/neutron attenuation competence of sodium fluoroborate glasses: Experimental and simulation investigation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sodium fluoroborate glasses with the mixed transition metal oxides (Bi2O3 and ZrO2) [65B2O3–25NaF–(10-x)Bi2O3–xZrO2, 0 ≤ x ≤ 6 mol percent] have been fabricated. According to xZrO2 values, the obtained glasses were named as BBNZ0, BBNZ2, BBNZ4, BBNZ5, and BBNZ6 glasses, respectively. The direct influence of (Bi2O3 and ZrO2) on physical, FTIR, optical, and gamma-ray shielding of the BBNZ-glasses has been investigated. The density of the fabricated glasses decreases linearly with about 18% as Bi2O3 is replaced by ZrO2. The number of N4 for BBNZ0 glass sample is about 0.47, which indicate that B2O3 is modified by NaF and Bi2O3 and the replacement of Bi2O3 by ZrO2 results in a slight decrease in the N4 value. Values of the direct optical bandgap were varied from 3.012 to 3.198 eV, while the indirect bandgap was varied from 2.665 to 2.913 eV for BBNZ0-BBNZ6 glasses. The refractive index of the investigated glasses is high, therefore can be applied in several optical applications. The linear (mass) attenuation coefficients LAC (MAC) varied from 0.11–169.81 (0.032–48.447), 0.10–139.81 (0.031–42.238), 0.09–109.765 (0.029–35.069), 0.09–94.09 (0.028–31.051), to 0.08–76.89 cm−1 (0.027–26.697 cm2/g) for BBNZ0-BBNZ6, respectively. As expected the trend in half value layer (HVL) value at each energy is (HVL)BBNZ0 < (HVL)BBNZ2 < (HVL)BBNZ4 < (HVL)BBNZ5 < (HVL)BBNZ6. The total stopping power (TSP) of the particles follow the order of increasing Bi2O3 content thus BBNZ0 has the highest TSP while BBNZ6 has the least. The present BBNZ-glasses are capable of functioning as thermal neutron and gamma-ray absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Umamaheswari, B. Jamalaiah, T. Sasikala, T. Chengaiah, I.-G. Kim, L.R. Moorthy, Photoluminescence and decay behavior of Tb3+ ions in sodium fluoro-borate glasses for display devices. J. Lumin. 132, 1166–1170 (2012)

    Article  CAS  Google Scholar 

  2. C.M. Reddy, G. Dillip, B.D.P. Raju, Spectroscopic and photoluminescence characteristics of Dy3+ ions in lead containing sodium fluoroborate glasses for laser materials. J. Phys. Chem. Solids 72, 1436–1441 (2011)

    Article  CAS  Google Scholar 

  3. G. Lakshminarayana, A. Meza-Rocha, O. Soriano-Romero, E. Huerta, U. Caldiño, A. Lira, D.-E. Lee, J. Yoon, T. Park, Pr3+-doped B2O3-Bi2O3-ZnO-NaF glasses comprising alkali/mixed alkali oxides for potential warm white light generation, blue laser, and E-+ S-+ C-optical bands amplification applications. J. Mater. Res. Technol. (2021). https://doi.org/10.1016/j.jmrt.2021.06.037

    Article  Google Scholar 

  4. A. Abd El-Rehim, K.S. Shaaban, Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses. J. Mater. Sci. 32, 4651–4671 (2021)

    Google Scholar 

  5. M. Mariyappan, S. Arunkumar, K. Marimuthu, Effect of Bi2O3 on JO parameters and spectroscopic properties of Er3+ incorporated sodiumfluoroborate glasses for amplifier applications. J. Non-Cryst. Solids 532, 119891 (2020)

    Article  CAS  Google Scholar 

  6. M. Mariyappan, S. Arunkumar, K. Marimuthu, White light emission and spectroscopic properties of Dy3+ ions doped bismuth sodiumfluoroborate glasses for photonic applications. J. Alloy. Compd. 723, 100–114 (2017)

    Article  CAS  Google Scholar 

  7. M.K. Murthy, K. Murthy, N. Veeraiah, Dielectric properties of NaF-B2O3 glasses doped with certain transition metal ions. Bull. Mater. Sci. 23, 285–293 (2000)

    Article  CAS  Google Scholar 

  8. A. Pronkin, V. Naraev, I. Murin, I. Sokolov, Concentration dependence of electric conductivity for fluorine-containing sodium borate glasses. Glass Phys. Chem 26, 268–273 (2000)

    Article  CAS  Google Scholar 

  9. H. Doweidar, K. El-Egili, R. Ramadan, E. Khalil, Structural species in mixed-fluoride PbF2–CdF2–B2O3 borate glasses FTIR investigation. Vib. Spectrosc. 102, 24–30 (2019)

    Article  CAS  Google Scholar 

  10. E. Kamitsos, M. Karakassides, A spectroscopic study of fluoride containing sodium borate glasses. Solid State Ionics 28, 783–787 (1988)

    Article  Google Scholar 

  11. I. Sokolov, V. Naraev, A. Nosakin, A. Pronkin, Influence of MeF2 (Me= Mg, Ca, Sr, and Ba) on the electrical properties of glasses in the MeF2-Na2B4O7 system. Glass Phys. Chem. 26, 383–389 (2000)

    Article  CAS  Google Scholar 

  12. C. Jager, U. Haubenreisser, A reexamination of studies of the structure of NaF-Na2O-B2O3 glasses. Phys. Chem. Glasses 26, 152–156 (1985)

    Google Scholar 

  13. A. Balakrishna, S. Babu, V. Kumar, O. Ntwaeaborwa, Y. Ratnakaram, Optical properties and spectroscopic study of different modifier based Pr3+: LiFB glasses as optical amplifiers. Spectrochim. Acta Part A 170, 167–173 (2017)

    Article  CAS  Google Scholar 

  14. R. Prasad, B.V. Siva, K. Neeraja, N.K. Mohan, J.I. Rojas, Effect of modifier oxides on spectroscopic and optical properties of Pr3+ doped PbO-Ro2O3–WO3–B2O3 glasses (with Ro2O= Sb2O3, Al2O3, and Bi2O3). J. Lumin. 230, 117666 (2021)

    Article  CAS  Google Scholar 

  15. A.S. Abouhaswa, F.I. El-Agawany, E.M. Ahmed, Y.S. Rammah, Optical, magnetic characteristics, and nuclear radiation shielding capacity of newly synthesized barium boro-vanadate glasses: B2O3–BaF2–Na2O–V2O5. Radiat. Phys. Chem. 192, 109922 (2022). https://doi.org/10.1016/j.radphyschem.2021.109922

    Article  CAS  Google Scholar 

  16. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, El Sayed Yousef, The f-factor, neutron, gamma radiation and proton shielding competences of glasses with Pb or Pb/Bi heavy elements for nuclear protection applications. Ceram. Int. 46, 27163–27174 (2020). https://doi.org/10.1016/j.ceramint.2020.07.197

    Article  CAS  Google Scholar 

  17. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, A. Gamal, El Sayed Yousef, Elastic moduli, photon, neutron, and proton shielding parameters of tellurite bismo-vanadate (TeO2–V2O5–Bi2O3) semiconductor glasses. Ceram. Int. 46, 25440–25452 (2020). https://doi.org/10.1016/j.ceramint.2020.07.014

    Article  CAS  Google Scholar 

  18. Y.S. Rammah, K.A. Mahmoud, E. Kavaz, F.I. Ashok Kumar, El-Agawany, The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceram. Int. 46, 23357–23368 (2020). https://doi.org/10.1016/j.ceramint.2020.04.018

    Article  CAS  Google Scholar 

  19. E. Hakan Akyildirim, F.I. Kavaz, E. El-Agawany, Y.S.R. Yousef, Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code. J. Non-Cryst. Solids 545, 120245 (2020)

    Article  Google Scholar 

  20. A.M. Abd-Elnaiem, H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, M. Rashad, The effect of composition and γ-irradiation on the Vickers hardness, structural and optical properties of xLiNbO3-25CaO-35PbO-(40–x) waste systems. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.03.210

    Article  Google Scholar 

  21. A.M.A. Henaish, M. Mostafa, B.I. Salem, H.M.H. Zakaly, S.A.M. Issa, I.A. Weinstein, O.M. Hemeda, Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites. J. Mater. Sci. Mater. Electron. 31, 20210–20222 (2020). https://doi.org/10.1007/s10854-020-04541-x

    Article  CAS  Google Scholar 

  22. S.A.M. Issa, M. Rashad, H.M.H. Zakaly, H.O. Tekin, A.S. Abouhaswa, Nb2O5- Li2O-Bi2O3-B2O3 novel glassy system: evaluation of optical, mechanical, and gamma shielding parameters. J. Mater. Sci. Mater. Electron. 31, 22039–22056 (2020). https://doi.org/10.1007/s10854-020-04707-7

    Article  CAS  Google Scholar 

  23. A.M.A. Mostafa, S.A.M. Issa, H.M.H. Zakaly, M.H.M. Zaid, H.O. Tekin, K.A. Matori, H.A.A. Sidek, R. Elsaman, The influence of heavy elements on the ionizing radiation shielding efficiency and elastic properties of some tellurite glasses: theoretical investigation. Results Phys. 19, 103496 (2020). https://doi.org/10.1016/j.rinp.2020.103496

    Article  Google Scholar 

  24. H.A. Saudi, H.O. Tekin, H.M.H. Zakaly, S.A.M. Issa, G. Susoy, M. Zhukovsky, The impact of samarium (III) oxide on structural, optical and radiation shielding properties of thallium-borate glasses: experimental and numerical investigation. Opt. Mater. (Amsterdam) 114, 110948 (2021). https://doi.org/10.1016/j.optmat.2021.110948

    Article  CAS  Google Scholar 

  25. H.M. Zakaly, A. Ashry, A. El-Taher, A.G.E. Abbady, E.A. Allam, R.M. El-Sharkawy, M.E. Mahmoud, Role of novel ternary nanocomposites polypropylene in nuclear radiation attenuation properties: in-depth simulation study. Radiat. Phys. Chem. 188, 109667 (2021). https://doi.org/10.1016/j.radphyschem.2021.109667

    Article  CAS  Google Scholar 

  26. G. Kilic, E. Ilik, S.A.M. Issa, B. Issa, U.G. Issever, H.M.H. Zakaly, H.O. Tekin, Fabrication, structural, optical, physical and radiation shielding characterization of indium (III) oxide reinforced 85TeO2-(15–x)ZnO-xIn2O3 glass system. Ceram. Int. 47, 27305–27315 (2021). https://doi.org/10.1016/j.ceramint.2021.06.152

    Article  CAS  Google Scholar 

  27. H.M.H. Zakaly, H.A. Saudi, H.O. Tekin, M. Rashad, S.A.M. Issa, Y.S. Rammah, A.I. Elazaka, M.M. Hessien, A. Ene, Glass fabrication using ceramic and porcelain recycled waste and lithium niobate: physical, structural, optical and nuclear radiation attenuation properties. J. Mater. Res. Technol. 15, 4074–4085 (2021). https://doi.org/10.1016/j.jmrt.2021.09.138

    Article  CAS  Google Scholar 

  28. D. Möncke, E.I. Kamitsos, A. Herrmann, D. Ehrt, M. Friedrich, Bonding and ion–ion interactions of Mn2+ ions in fluoride-phosphate and boro-silicate glasses probed by EPR and fluorescence spectroscopy. J. Non-Cryst. Solids 357, 2542–2551 (2011)

    Article  Google Scholar 

  29. J. Holubová, Z. Černošek, E. Černošková, L. Beneš, Thermal properties and structure of zinc–manganese metaphosphate glasses. J. Therm. Anal. Calorim. 122, 47–53 (2015)

    Article  Google Scholar 

  30. L.E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, E.V. Santiago, An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films. Appl. Surf. Sci. 254, 412–415 (2007)

    Article  Google Scholar 

  31. D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119, 273–279 (2015)

    Article  CAS  Google Scholar 

  32. Y.S. Rammah, H.O. Tekin, C. Sriwunkum, I. Olarinoye, A. Alalawi, M.S. Al-Buriahi, T. Nutaro, B.T. Tonguc, Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications. Nucl. Eng. Technol. 53(1), 282–293 (2021)

    Article  CAS  Google Scholar 

  33. H.O. Tekin, S.A.M. Issa, E.M. Ahmed, Y.S. Rammah, Lithium-fluoro borotellurite glasses: nonlinear optical, mechanical, characteristics and gamma radiation protection characteristics. Radiat. Phys. Chem. 190, 109819 (2022). https://doi.org/10.1016/j.radphyschem.2021.109819

    Article  CAS  Google Scholar 

  34. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  35. A.M. El-Khayatt, H.R. Vega-Carrillo, Photon and neutron kerma coefficients for polymer gel dosimeters. Nucl. Instrum. Methods Phys. Res. Sect. A 792, 6–10 (2015). https://doi.org/10.1016/j.nima.2015.04.033

    Article  CAS  Google Scholar 

  36. H. Baltas, Evaluation of gamma attenuation parameters and kerma coefficients of YBaCuO and BiPbSrCaCuO superconductors using EGS4 code. Radiat. Phys. Chem. 166, 108517 (2020). https://doi.org/10.1016/j.radphyschem.2019.108517

    Article  CAS  Google Scholar 

  37. J.H. Hubbell, S.M. Seltzer, NIST Standard Reference Database 126. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1keV to 20MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest [Internet]. Gaithersburg: National Institute of Standards and Technology; 1996 [cited 2019 Sep 11] (2004)

  38. I.O. Olarinoye, R.I. Odiaga, S. Paul, EXABCal: A program for calculating photon exposure and energy absorption buildup factors. Heliyon 5(7), e02017 (2019). https://doi.org/10.1016/j.heliyon.2019.e02017

    Article  CAS  Google Scholar 

  39. I.O. Olarinoye, Photon buildup factors for some tissues and phantom materials for penetration depths up to 100 MFP. J. Nucl. Res. Dev. 13, 57–67 (2017)

    Google Scholar 

  40. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24(17), 1389–1401 (1997)

    Article  CAS  Google Scholar 

  41. I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, Y.S. Rammah, Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceram. Int. 46(14), 23134–23144 (2020)

    Article  CAS  Google Scholar 

  42. https://www.schott.com/en-in/products/radiation-shielding-glasses-p1000330 , n.d.

  43. F.H. Attix, Introduction to radiological physics and radiation dosimetry (Wiley, Hoboken, 2008)

    Google Scholar 

  44. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, I. Akkurt, E. Yousef, Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2. J. Mater. Sci. 32(6), 7377–7390 (2021). https://doi.org/10.1007/s10854-021-05447-y

    Article  CAS  Google Scholar 

  45. V.F. Sears, Neutron scattering lengths and cross sections. Neutron News 3(3), 26–37 (1992). https://doi.org/10.1080/10448639208218770

    Article  Google Scholar 

  46. S.A. Issa, A.M. Ali, H.O. Tekin, Y.B. Saddeek, A. Al-Hajry, H. Algarni, G. Susoy, Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3. Nucl. Eng. Technol. 52(6), 1297–1303 (2020). https://doi.org/10.1016/j.net.2019.11.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project number (TURSP-2020/84), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MHM, MSS, EMA, RAE, AMA, IOO, YSR: Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing—Review and Editing, Visualization, Supervision.

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misbah, M.H., Shams, M.S., Ahmed, E.M. et al. Preparation, structural, optical characteristics, and photon/neutron attenuation competence of sodium fluoroborate glasses: Experimental and simulation investigation. J Mater Sci: Mater Electron 33, 16334–16347 (2022). https://doi.org/10.1007/s10854-022-08525-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08525-x

Navigation