Skip to main content
Log in

Synthesis, characterization, dielectric and magnetic properties of substituted Y-type hexaferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fabrication of a series of zinc–strontium hexaferrites, Sr2Zn2−xMnxFe12−yHoyO22 (x = 0.0–1.0, y = 0.0–0.1) was carries out by chemical co-precipitation route with the aim to enhance the saturation magnetization and coercivity and decrease the resistivity to make the materials applicable for recording media of high-density applications. The synthesized hexaferrites were interpreted by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The results of XRD investigation certify the single magnetoplumbite phase formed in hexaferrites with regular crystallite particle size in the 31–38 nm range. Magnetic and dielectric properties of the hexaferrites were also observed. The dielectric parameters (dielectric loss also its tan loss and dielectric constant) were measured at ambient temperature and in 1.0 MHz to 3.0 GHz frequency range. These parameters of Mn–Ho-substituted Zn–Sr hexaferrites showed constant trend with frequency up to a certain value after that resonance sort of behavior was observed. In all the hexaferrites dielectric parameters initially decrease with frequency then become almost constant followed by resonance type behavior. The dielectric parameters of the synthesized samples decrease with dopant content initially but then increase up to maximum dopant level. The saturation magnetization (Ms) and remanence (Mr) increase as the dopant content increases due to magnetic substituents. The squareness ratios of all the nanomaterials synthesized in the present studies is less than 0.5. The coercivity (Hc) decreases by the substitution of Mn and Ho.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing are not applicable to this article as no data sets were generated during the present study.

References

  1. X. Chen, Y. Wang, H. Liu, S. Jin, G. Wu, Interconnected magnetic carbon@NixCo1xFe2O4 nanospheres with core–shell structure: an efficient and thin electromagnetic wave absorber. J. Colloid Interface Sci. 606, 526–536 (2022)

    Article  CAS  Google Scholar 

  2. C.-H. Wang, Y. Liu, J.-R. Luo, S.-K. Zheng, J. Tu, H.-Y. Xu, H. Huang, J.-M. Chen, P.-H. Wang, Deformation substructure development in AlXCoCrFeNi (X = 0, 0.3) high entropy alloy under different influencing factors. J. Alloys Compd. 893, 162196 (2022)

    Article  CAS  Google Scholar 

  3. D. Lan, Z. Zhao, Z. Gao, K. Kou, H. Wu, Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 92, 51–59 (2021)

    Article  CAS  Google Scholar 

  4. S.B. Narang, K. Pubby, Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 519, 167163 (2021)

    Article  CAS  Google Scholar 

  5. A. Houbi, Z.A. Aldashevich, Y. Atassi, Z. Bagasharova Telmanovna, M. Saule, K. Kubanych, Microwave absorbing properties of ferrites and their composites: a review. J. Magn. Magn. Mater. 529, 167839 (2021)

    Article  CAS  Google Scholar 

  6. I. Ali, M.U. Islam, I. Sadiq, N. Karamat, A. Iftikhar, M.A. Khan, A. Shah, M. Athar, I. Shakir, M.N. Ashiq, Synthesis and magnetic properties of (Eu–Ni) substituted Y-type hexaferrite by surfactant assisted co-precipitation method. J. Magn. Magn. Mater. 385, 386–393 (2015)

    Article  CAS  Google Scholar 

  7. I. Ali, M. Islam, M.N. Ashiq, M.A. Iqbal, H.M. Khan, G. Murtaza, Role of grain boundaries in the conduction of Eu–Ni substituted Y-type hexaferrites. J. Magn. Magn. Mater. 362, 115–121 (2014)

    Article  CAS  Google Scholar 

  8. M. Ahmad, M. Ahmad, I. Ali, W. Ahmad, G. Mustafa, M.N. Akhtar, A. Ali, G. Abbas, Temperature dependent structural and magnetic behavior of Y-type hexagonal ferrites synthesized by sol–gel autocombustion. J. Alloys Compd. 651, 749–755 (2015)

    Article  CAS  Google Scholar 

  9. M. Obol, X. Zuo, C. Vittoria, Oriented Y-type hexaferrites for ferrite device. J. Appl. Phys. 91, 7616–7618 (2002)

    Article  CAS  Google Scholar 

  10. Y. Bai, J. Zhou, Z. Gui, L. Li, Electrical properties of non-stoichiometric Y-type hexagonal ferrite. J. Magn. Magn. Mater. 278, 208–213 (2004)

    Article  CAS  Google Scholar 

  11. S.Z. Iqbal, R. Paterson, I.A. Bhatti, M.R. Asi, Survey of aflatoxins in chillies from Pakistan produced in rural, semi-rural and urban environments. Food Addit. Contam. 3, 268–274 (2010)

    Article  CAS  Google Scholar 

  12. W. Xu, J. Yang, W. Bai, Y. Zhang, K. Tang, C.-G. Duan, X. Tang, J. Chu, Effects of aluminum substitution on the crystal structure and magnetic properties in Zn2Y-type hexaferrites. J. Appl. Phys. 117, 17D909 (2015)

    Article  CAS  Google Scholar 

  13. O. Mirzaee, R. Mohamady, A. Ghasemi, Y.A. Farzin, Study of the magnetic and structural properties of Al–Cr codoped Y-type hexaferrite prepared via sol–gel auto-combustion method. Int. J. Mod. Phys. B 29, 1550090 (2015)

    Article  CAS  Google Scholar 

  14. A. Nikzad, A. Ghasemi, M.K. Tehrani, G.R. Gordani, Y-type strontium hexaferrite: the role of Al substitution, structural, and magnetic consequence. J. Supercond. Nov. Magn. 28, 3579–3586 (2015)

    Article  CAS  Google Scholar 

  15. M.R. Farzin, M.S. Kahreh, M. Hesan, A. Khalouei, A survey of critical success factors for strategic knowledge management implementation: applications for service sector. Procedia Soc. Behav. Sci. 109, 595–599 (2014)

    Article  Google Scholar 

  16. I. Ali, M.U. Islam, M.N. Ashiq, M. AsifIqbal, N. Karamat, M.S. Awan, S. Naseem, Role of Tb–Mn substitution on the magnetic properties of Y-type hexaferrites. J. Alloys Compd. 599, 131–138 (2014)

    Article  CAS  Google Scholar 

  17. K. Samikannu, J. Sinnappan, S. Mannarswamy, T. Cinnasamy, K. Thirunavukarasu, Synthesis and magnetic properties of conventional and microwave calcined strontium hexaferrite powder. Mater. Sci. Appl. 2, 638–642 (2011)

    CAS  Google Scholar 

  18. M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383–389 (2008)

    Article  CAS  Google Scholar 

  19. L. Rezlescu, E. Rezlescu, P.D. Popa, N. Rezlescu, Fine barium hexaferrite powder prepared by the crystallisation of glass. J. Magn. Magn. Mater. 193, 288 (1999)

    Article  CAS  Google Scholar 

  20. W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan, Y. Du, Key step in synthesis of ultrafine BaFe12O19 by sol–gel technique. J. Magn. Magn. Mater. 168, 196–202 (1997)

    Article  CAS  Google Scholar 

  21. F. Leccabue, O.A. Muzio, M.S.E. Kany, G. Calestani, G. Albanese, Magnetic properties and phase formation of SrMn2Fe16O27 (SrMn2-W) hexaferrite prepared by the coprecipitation method. J. Magn. Magn. Mater. 68, 201–212 (1987)

    Article  CAS  Google Scholar 

  22. I. Ali, M. Islam, M. Awan, M. Ahmad, Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route. J. Alloys Compd. 547, 118–125 (2013)

    Article  CAS  Google Scholar 

  23. S.G. West, W.G. Graziano, Long-term stability and change in personality: an introduction. J. Pers. 57, 175–193 (1989)

    Article  Google Scholar 

  24. L.-X. Dai, X.-L. Hou, Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications (Wiley, Hoboken, 2010)

    Google Scholar 

  25. I. Ali, M. Islam, M.N. Ashiq, H.M. Khan, M.A. Iqbal, M. Najam-Ul-Haq, Effect of Eu–Ni substitution on electrical and dielectric properties of Co–Sr–Y-type hexagonal ferrite. Mater. Res. Bull. 49, 338–344 (2014)

    Article  CAS  Google Scholar 

  26. S. Che, J. Wang, Q. Chen, Soft magnetic nanoparticles of BaFe12O19 fabricated under mild conditions. J. Phys.: Condens. Matter 15, L335 (2003)

    CAS  Google Scholar 

  27. E. Pervaiz, I. Gul, High frequency AC response, DC resistivity and magnetic studies of holmium substituted Ni-ferrite: a novel electromagnetic material. J. Magn. Magn. Mater. 349, 27–34 (2014)

    Article  CAS  Google Scholar 

  28. S. Ounnunkad, Improving magnetic properties of barium hexaferrites by La or Pr substitution. Solid State Commun. 138, 472–475 (2006)

    Article  CAS  Google Scholar 

  29. M.J. Iqbal, S. Farooq, Extraordinary role of Ce–Ni elements on the electrical and magnetic properties of Sr–Ba M-type hexaferrites. Mater. Res. Bull. 44, 2050–2055 (2009)

    Article  CAS  Google Scholar 

  30. W.E. Lee, M. Rainforth, Ceramic Microstructures: Property Control by Processing (Springer Science & Business Media, Berlin, 1994)

    Google Scholar 

  31. Y. Wang, L. Li, H. Liu, H. Qiu, F. Xu, Magnetic properties and microstructure of La-substituted BaCr-ferrite powders. Mater. Lett. 62, 2060–2062 (2008)

    Article  CAS  Google Scholar 

  32. G. Asghar, M. Anis-ur-Rehman, Structural, dielectric and magnetic properties of Cr–Zn doped strontium hexa-ferrites for high frequency applications. J. Alloys Compd. 526, 85–90 (2012)

    Article  CAS  Google Scholar 

  33. A.A. El Ata, S. Attia, Dielectric dispersion of Y-type hexaferrites at low frequencies. J. Magn. Magn. Mater. 257, 165–174 (2003)

    Article  Google Scholar 

  34. M.A. Iqbal, Misbah-ul-Islam, I. Ali, H.M. Khan, G.M. Mustafa, I. Ali, Study of electrical transport properties of Eu3+ substituted MnZn-ferrites synthesized by co-precipitation technique. Ceram. Int. 39, 1539–1545 (2013)

    Article  CAS  Google Scholar 

  35. J. Maxwell, Electric and Magnetism, vol. 2 (Oxford University Press, New York, 1973)

    Google Scholar 

  36. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  37. S. Watawe, B. Sarwade, S. Bellad, B.D. Sutar, B.K. Chougule, Microstructure, frequency and temperature-dependent dielectric properties of cobalt-substituted lithium ferrites. J. Magn. Magn. Mater. 214, 55–60 (2000)

    Article  CAS  Google Scholar 

  38. M.B. Reddy, P.V. Reddy, Low-frequency dielectric behaviour of mixed Li–Ti ferrites. J. Phys. D 24, 975 (1991)

    Article  CAS  Google Scholar 

  39. Y. Wang, L. Zhou, M. Zhang, X. Chen, J.-M. Liu, Z. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  CAS  Google Scholar 

  40. D. Ravinder, P.V.B. Reddy, P. Shalini, Frequency and composition dependence of dielectric behavior of copper substituted lithium ferrites. J. Mater. Sci. Lett. 22, 1599–1601 (2003)

    Article  CAS  Google Scholar 

  41. D. Ravinder, K.V. Kumar, Dielectric behaviour of erbium substituted Mn–Zn ferrites. Bull. Mater. Sci. 24, 505–509 (2001)

    Article  CAS  Google Scholar 

  42. M.M. Haque, M. Huq, M. Hakim, Densification, magnetic and dielectric behaviour of Cu-substituted Mg–Zn ferrites. Mater. Chem. Phys. 112, 580–586 (2008)

    Article  CAS  Google Scholar 

  43. P. Singh, V. Babbar, A. Razdan, S. Srivastava, V. Agrawal, T. Goel, Dielectric constant, magnetic permeability and microwave absorption studies of hot-pressed Ba–CoTi hexaferrite composites in X-band. J. Mater. Sci. 41, 7190–7196 (2006)

    Article  CAS  Google Scholar 

  44. S.B. Narang, I. Hudiara, Microwave dielectric properties of M-type barium, calcium and strontium hexaferrite substituted with Co and Ti. J. Ceram. Process. Res. 7, 113–116 (2006)

    Google Scholar 

  45. S. Camci Cetin, A. Namlı, R. Kizilkaya, O. Turgay, Role of plant growth promoting bacteria and fungi in heavy metal detoxification, in Detoxification of Heavy Metals. ed. by I. Sherameti, A. Varma (Springer, Berlin, 2011), pp. 369–388

    Chapter  Google Scholar 

  46. G. Albanese, Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods. J. Phys. Colloq. (1977). https://doi.org/10.1051/jphyscol:1977117

    Article  Google Scholar 

  47. N. Karamat, M.N. Ashiq, M. Najam-ul-Haq, I. Ali, M.A. Iqbal, M. Irfan, Y. Abbas, M. Athar, Investigation of structural and electrical properties of vanadium substituted disordered pyrochlore-type Ho2xVxZr2O7 nanostructure. J. Alloys Compd. 593, 117–122 (2014)

    Article  CAS  Google Scholar 

  48. V. Murthy, J. Sobhanadri, Dielectric properties of some nickel–zinc ferrites at radio frequency. Phys. Status Solidi (a) 36, K133–K135 (1976)

    Article  CAS  Google Scholar 

  49. M. Chourashiya, J. Patil, S. Pawar, L. Jadhav, Studies on structural, morphological and electrical properties of Ce1xGdxO2(x/2). Mater. Chem. Phys. 109, 39–44 (2008)

    Article  CAS  Google Scholar 

  50. M.A. Gabal, W. Bayoumy, Effect of composition on structural and magnetic properties of nanocrystalline Ni0.8xZn0.2MgxFe2O4 ferrite. Polyhedron 29, 2569–2573 (2010)

    Article  CAS  Google Scholar 

  51. F. Aen, S.B. Niazi, M. Islam, M. Ahmad, M. Rana, Effect of holmium on the magnetic and electrical properties of barium based W-type hexagonal ferrites. Ceram. Int. 37, 1725–1729 (2011)

    Article  CAS  Google Scholar 

  52. I. Ali, M.U. Islam, M. Ishaque, H.M. Khan, M. Naeem Ashiq, M.U. Rana, Structural and magnetic properties of holmium substituted cobalt ferrites synthesized by chemical co-precipitation method. J. Magn. Magn. Mater. 324, 3773–3777 (2012)

    Article  CAS  Google Scholar 

  53. S.E. Shirsath, B. Toksha, K. Jadhav, Structural and magnetic properties of In3+ substituted NiFe2O4. Mater. Chem. Phys. 117, 163–168 (2009)

    Article  CAS  Google Scholar 

  54. R. Skomski, J.M.D. Coey, Permanent Magnetism (Institute of Physics Pub., Bristol, Philadelphia, 1999)

    Google Scholar 

  55. Y. Li, R. Liu, Z. Zhang, C. Xiong, Synthesis and characterization of nanocrystalline BaFe9.6Co0.8Ti0.8M0.8O19 particles. Mater. Chem. Phys. 64, 256–259 (2000)

    Article  CAS  Google Scholar 

  56. C. Sudakar, G. Subbanna, T. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties. J. Magn. Magn. Mater. 263, 253–268 (2003)

    Article  CAS  Google Scholar 

  57. I.P. Muthuselvam, R. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  CAS  Google Scholar 

  58. R. Zhou, Y. Huang, J. Zhou, H. Niu, L. Wan, Y. Li, J. Xu, J. Xu, Copper selenide (Cu3Se2 and Cu2−xSe) thin films: electrochemical deposition and electrocatalytic application in quantum dot-sensitized solar cells. Dalton Trans. 47, 16587–16595 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R26), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Moreover, we would like to thank Taif University Research Supporting Project Number (TURSP-2020/63), Taif University, Taif, Saudi Arabia.

Funding

This study was supported by Princess Nourah Bint Abdulrahman University [Grant No. PNURSP2022R26].

Author information

Authors and Affiliations

Authors

Contributions

SRB, MAM: worked in the laboratory, i.e. experimental work done and also wrote the manuscript. SA: development or design of methodology; creation of models. NA, SAK, ZAA, MSA-B, SA: review writing and editing. FA: visualization. MNA: supervision.

Corresponding authors

Correspondence to Muhammad Naeem Ashiq or Salma Aman.

Ethics declarations

Conflict of interest

The authors report no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, S.R., Malana, M.A., Alfryyan, N. et al. Synthesis, characterization, dielectric and magnetic properties of substituted Y-type hexaferrites. J Mater Sci: Mater Electron 33, 16183–16196 (2022). https://doi.org/10.1007/s10854-022-08508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08508-y

Navigation