Skip to main content
Log in

Growth and characterization of Cu2O and CuO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Crystalline Cu2O and CuO thin films were synthesized by pulsed laser deposition on fused silica substrates at three O2 partial pressures (0.1 Pa, 1 Pa and 10 Pa) and the effects of O2 pressure on the phase formation, structural, optical, surface morphology, wettability and electrical properties of films were characterized by grazing-incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), UV–visible, FTIR, Raman and photoluminescence (PL) spectroscopy, water contact angle measurements and two-probe electrical studies. GIXRD and Raman studies revealed that the film prepared at 0.1 Pa is a mixed phase of Cu and Cu2O, while the films prepared at higher O2 pressure of 1 Pa and 10 Pa are single-phase CuO. The optical bandgap of the films decreases from 3.00 eV to 2.82 eV with the conversion of Cu2O into CuO. PL studies show strong luminescence peaks at 486 nm (blue), 503 nm (green) and 613 nm (red). The surface roughness of the films decreases with an increase in O2 pressure from 0.1 Pa to 10 Pa. All films are hydrophilic and the hydrophilicity decreases with an increase in O2 pressure. The surface electrical resistivities of films deposited at 0.1 Pa, 1 Pa and 10 Pa O2 pressure are 1.6 × 102, 6.4 × 104 and 1.0 × 104 Ω cm, respectively. It is found that copper oxide phase formation and its properties can be significantly modified by varying O2 pressure during PLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The data on the samples reported in the manuscript are available from the authors.

References

  1. B. Xu, J. Zhou, Z. Ni, C. Zhang, C. Lu, Solar Energy Materials and Solar Cells Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion. Sol. Energy Mater. Sol. Cells. 179, 87–94 (2018). https://doi.org/10.1016/j.solmat.2018.02.008

    Article  CAS  Google Scholar 

  2. J. Zhang, J. Liu, Q. Peng, X. Wang, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18(4), 867–871 (2006)

    Article  CAS  Google Scholar 

  3. A. Ulyankina, I. Leontyev, O. Maslova, M. Allix, A. Rakhmatullin, N. Nevzorova, R. Valeev, G. Yalovega, N. Smirnova, Materials science in semiconductor processing copper oxides for energy storage application: novel pulse alternating current synthesis. Mater. Sci. Semicond. Process. (2017). https://doi.org/10.1016/j.mssp.2017.08.001

    Article  Google Scholar 

  4. M. Kaur, A. Tovstolytkin, G. Singh, Magnetoelectric coupling in CuO nanoparticles for spintronics applications. Electron. Mater. Lett. 14, 370–375 (2018). https://doi.org/10.1007/s13391-018-0026-1

    Article  CAS  Google Scholar 

  5. D. Wojcieszak, A. Obstarczyk, E. Man’kowska, M. Mazur, D. Kaczmarek, K. Zakrzewska, P. Mazur, J. Domaradzki, Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films. Mater. Res. Bull. (2021). https://doi.org/10.1016/j.materresbull.2021.111646

    Article  Google Scholar 

  6. F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, Chemical Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sens. Actuators B 134, 761–768 (2008). https://doi.org/10.1016/j.snb.2008.06.023

    Article  CAS  Google Scholar 

  7. N. Verma, N. Kumar, Synthesis and biomedical applications of copper oxide nanoparticles: an expanding. Horizon (2019). https://doi.org/10.1021/acsbiomaterials.8b01092

    Article  Google Scholar 

  8. Y. Xu, K. Chu, Z. Li, S. Xu, G. Yao, P. Niu, F. Zheng, Porous CuO@C composite as high-performance anode materials for lithium-ion batteries. Dalt. Trans. 49, 11597–11604 (2020). https://doi.org/10.1039/d0dt02493g

    Article  CAS  Google Scholar 

  9. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande, Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J Alloys Compds. 492, 26–30 (2010). https://doi.org/10.1016/j.jallcom.2009.11.149

    Article  CAS  Google Scholar 

  10. G. Chen, J.-M. Langlois, Y. Guo, W.A. Goddard, Superconducting properties of copper oxide high-temperature superconductors. Proc. Natl. Acad. Sci. U.S.A. 86, 3447–3451 (2021)

    Article  Google Scholar 

  11. R.K. Jain, A. Khanna, CuO-doped WO3 thin film H2S sensors. Sens. Actuators, B Chem. 343, 130153 (2021). https://doi.org/10.1016/j.snb.2021.130153

    Article  CAS  Google Scholar 

  12. F. Marabelli, G.B. Parravicini, F. Salghetti-Drioli, Optical gap of CuO. Phys. Rev. B 52, 1433–1436 (1995). https://doi.org/10.1103/PhysRevB.52.1433

    Article  CAS  Google Scholar 

  13. J. Ghijsen, L.H. Tjeng, J.V. Elp, H. Eskes, Electronic structure of Cu2O and CuO. Phys. Rev. B 38, 11322–11330 (1988). https://doi.org/10.1063/1.1725063

    Article  CAS  Google Scholar 

  14. S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, W. Assmann, Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization. Vacuum 57, 377–385 (2000)

    Article  CAS  Google Scholar 

  15. Y.S. Gong, C. Lee, C.K. Yang, Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films. J. Appl. Phys. 77, 5422–5425 (1995)

    Article  CAS  Google Scholar 

  16. L.S. Huang, S.G. Yang, T. Li, B.X. Gu, Y.W. Du, Y.N. Lu, S.Z. Shi, Preparation of large-scale cupric oxide nanowires by thermal evaporation method. J. Cryst. Growth. 260, 130–135 (2004). https://doi.org/10.1016/j.jcrysgro.2003.08.012

    Article  CAS  Google Scholar 

  17. Z.Q. Yu, C.M. Wang, M.H. Engelhard, P. Nachimuthu, D.E. McCready, I.V. Lyubinetsky, S. Thevuthasan, Epitaxial growth and microstructure of Cu2O nanoparticle/thin films on SrTiO3(100). Nanotechnology 18, 115601 (2007). https://doi.org/10.1088/0957-4484/18/11/115601

    Article  CAS  Google Scholar 

  18. F. Oba, F. Ernst, Y. Yu, R. Liu, H.M. Kothari, J.A. Switzer, Epitaxial growth of cuprous oxide electrodeposited onto semiconductor and metal substrates. J. Am. Ceram. Soc. 88, 253–270 (2005). https://doi.org/10.1111/j.1551-2916.2005.00118.x

    Article  CAS  Google Scholar 

  19. Y.S. Jung, K.H. Kim, Effects of post-annealing treatment on the properties of reactive sputtered cuprous-oxide. Thin Films 67, 1013–1017 (2015). https://doi.org/10.3938/jkps.67.1013

    Article  CAS  Google Scholar 

  20. N.A. Raship, M.Z. Sahdan, F. Adriyanto, M.F. Nurfazliana, A.S. Bakri, Effect of annealing temperature on the properties of copper oxide films prepared by dip coating technique. AIP Conf. Proc. (2017). https://doi.org/10.1063/1.4968374

    Article  Google Scholar 

  21. M. Basu, A.K. Sinha, M. Pradhan, S. Sarkar, Y. Negishi, T. Pal, Fabrication and functionalization of CuO for tuning superhydrophobic thin film and cotton wool. J. Phys. Chem. C. 115, 20953–20963 (2011). https://doi.org/10.1021/jp206178x

    Article  CAS  Google Scholar 

  22. F.M. Chang, S.L. Cheng, S.J. Hong, Y.J. Sheng, H.K. Tsao, Superhydrophilicity to superhydrophobicity transition of CuO nanowire films. Appl. Phys. Lett. 96, 96–99 (2010). https://doi.org/10.1063/1.3360847

    Article  CAS  Google Scholar 

  23. K. Tang, X. Wang, W. Yan, J. Yu, R. Xu, Fabrication of superhydrophilic Cu2O and CuO membranes. J. Memb. Sci. 286, 279–284 (2006). https://doi.org/10.1016/j.memsci.2006.10.005

    Article  CAS  Google Scholar 

  24. S. Sonia, P. Suresh Kumar, N.D. Jayram, Y. Masuda, D. Mangalaraj, C. Lee, Superhydrophobic and H2S gas sensing properties of CuO nanostructured thin films through a successive ionic layered adsorption reaction process. RSC Adv. 6, 24290–24298 (2016). https://doi.org/10.1039/c6ra00209a

    Article  CAS  Google Scholar 

  25. M. Pei, B. Wang, Y. Tang, X. Zhang, H. Yan, X. Zhang, Preparation of Cu2O superhydrophobic film with hierarchical structure via the facile route. Asian J. Chem. 26, 315–318 (2014). https://doi.org/10.14233/ajchem.2014.15371

    Article  CAS  Google Scholar 

  26. Q. Pan, H. Jin, H. Wang, Fabrication of superhydrophobic surfaces on interconnected Cu(OH)2 nanowires via solution-immersion. Nanotechnology (2007). https://doi.org/10.1088/0957-4484/18/35/355605

    Article  Google Scholar 

  27. M. Hari Prasad Reddy, J.F. Pierson, S. Uthanna, Structural, surface morphological, and optical properties of nanocrystalline Cu2O and CuO films formed by RF magnetron sputtering: Oxygen partial pressure effect, Phys. Status Solidi Appl. Mater. Sci. 209 (2012) 1279–1286. https://doi.org/10.1002/pssa.201127627.

  28. S.B. Ogale, P.G. Bilurkar, N. Mate, S.M. Kanetkar, N. Parikh, B. Panaik, Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation. J. Appl. Phys. 72, 3765–3769 (1992)

    Article  CAS  Google Scholar 

  29. R.K. Jain, J. Kaur, S. Arora, A. Kumar, A.K. Chawla, A. Khanna, Effects of oblique angle deposition on structural, electrical and wettability properties of Bi thin films grown by thermal evaporation. Appl. Surf. Sci. 463, 45–51 (2019). https://doi.org/10.1016/j.apsusc.2018.08.200

    Article  CAS  Google Scholar 

  30. F. Baig, Y.H. Khattak, B.M. Soucase, S. Beg, S. Ullah, Effect of anionic bath temperature on morphology and photo electrochemical properties of Cu2O deposited by SILAR. Mater. Sci. Semicond. Process. 88, 35–39 (2018). https://doi.org/10.1016/j.mssp.2018.07.031

    Article  CAS  Google Scholar 

  31. J. Kaur, R.K. Jain, A. Khanna, A.K. Chawla, Effects of thickness on the wettability and electrical properties of Sn thin films. J. Vac. Sci. Technol. B 39(1–7), 032205 (2021). https://doi.org/10.1116/6.0001026

    Article  CAS  Google Scholar 

  32. S. Chacko, N. Sajeeth, K.G. Gopchandran, P. Koshy, V.K. Vaidyan, Nanostructural and surface morphological evolution of chemically sprayed SnO2 thin films. Appl. Surf. Sci. 254, 2179–2186 (2008). https://doi.org/10.1016/j.apsusc.2007.09.027

    Article  CAS  Google Scholar 

  33. E. Kroumova, M.L. Aroyo, J.M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Bilbao Crystallographic Server: Useful databases and tools for phase-transition studies. Phase Trans. 76, 155–170 (2003). https://doi.org/10.1080/0141159031000076110

    Article  CAS  Google Scholar 

  34. L. Debbichi, J.F. Pierson, Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy. J. Phys. Chem. C. 116, 10232–10237 (2012)

    Article  CAS  Google Scholar 

  35. K. Reimann, K. Syassen, Raman scattering and photoluminescence in Cu2O under hydrostatic pressure. Phys. Rev. B. 39, 113–119 (1989)

    Article  Google Scholar 

  36. M.A. Dar, Y.S. Kim, W.B. Kim, J.M. Sohn, H.S. Shin, Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Appl. Surf. Sci. 254, 7477–7481 (2008). https://doi.org/10.1016/j.apsusc.2008.06.004

    Article  CAS  Google Scholar 

  37. R. Shabu, A. Moses Ezhil Raj, C. Sanjeeviraja, C. Ravidhas, Assessment of CuO thin films for its suitablity as window absorbing layer in solar cell fabrications. Mater. Res. Bull. 68, 1–8 (2015). https://doi.org/10.1016/j.materresbull.2015.03.016

    Article  CAS  Google Scholar 

  38. A. Aslani, V. Oroojpour, CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route. Physica B 406, 144–149 (2011). https://doi.org/10.1016/j.physb.2010.09.038

    Article  CAS  Google Scholar 

  39. X. Zhao, P. Wang, Z. Yan, N. Ren, Room temperature photoluminescence properties of CuO nanowire arrays. Opt. Mater. 42, 544–547 (2015). https://doi.org/10.1016/j.optmat.2014.12.032

    Article  CAS  Google Scholar 

  40. V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, E. Fortunato, Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Appl. Surf. Sci. 254, 3949–3954 (2008). https://doi.org/10.1016/j.apsusc.2007.12.019

    Article  CAS  Google Scholar 

  41. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142–144 (1992). https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  42. P. Suthanthirakumar, K. Marimuthu, Investigations on spectroscopic properties of Dy3+ doped zinc telluro-fluoroborate glasses for laser and white LED applications. J. Mol. Struct. 1125, 443–452 (2016). https://doi.org/10.1016/j.molstruc.2016.06.080

    Article  CAS  Google Scholar 

  43. K.V. Krishnaiah, K.U. Kumar, C.K. Jayasankar, Spectroscopic properties of Dy3+-doped oxyfluoride glasses for white light emitting diodes. Mater. Express. 3, 61–70 (2013). https://doi.org/10.1166/mex.2013.1094

    Article  CAS  Google Scholar 

  44. X. Hu, F. Gao, Y. Xiang, H. Wu, X. Zheng, J. Jiang, J. Li, H. Yang, S. Liu, Influence of oxygen pressure on the structural and electrical properties of CuO thin films prepared by pulsed laser deposition. Mater. Lett. 176, 282–284 (2016). https://doi.org/10.1016/j.matlet.2016.04.055

    Article  CAS  Google Scholar 

  45. W. Reichardt, F. Gompf, M. Ain, B.M. Wanklyn, Lattice dynamics of cupric oxide. J. Phys. Condens. Matter 81, 19–24 (1990)

    CAS  Google Scholar 

  46. X.K. Chen, J.C. Iwrin, Evidence for a strong spin-phonon interaction in cupric oxide. Phys. Rev. B. 52, 130–133 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

Atul Khanna acknowledges Council for Scientific and Industrial Research (CSIR), New Delhi, India, for a research grant (03(1399)/17/EMR-II). Jatinder Kaur thanks CSIR for research fellowship.

Funding

Council for Scientific and Industrial Research (CSIR), New Delhi, India is acknowledged for a research grant (03(1399)/17/EMR-II).

Author information

Authors and Affiliations

Authors

Contributions

AK conceptualized the research problem and planned the experiments. JK, RK and RC prepared thin film samples by pulsed laser deposition. JK characterized the samples by electrical resistivity, optical absorption, Raman and photoluminescence, X-ray diffraction, AFM and FESEM studies. The wettability studies were carried out by RK and RC. The data analysis was done by JK and AK. The manuscript writing and editing was done by JK and AK.

Corresponding author

Correspondence to Atul Khanna.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Khanna, A., Kumar, R. et al. Growth and characterization of Cu2O and CuO thin films. J Mater Sci: Mater Electron 33, 16154–16166 (2022). https://doi.org/10.1007/s10854-022-08506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08506-0

Navigation