Skip to main content
Log in

The phase composition, microwave dielectric properties, and improved temperature stability of cobalt ionic-doped (Zn1−xCox)0.5Ti0.5(Nb0.9Ta0.1)O4 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, combined usage of cobalt and tantalum ionic substitution strategy was adopted on the (Zn1−xCox)0.5Ti0.5(Nb0.9Ta0.1)O4 ceramics, where the phase constitutions and microwave dielectric properties were investigated. It is shown that a finite ixiolite-type Zn0.5Ti0.5NbO4 solid solution can only be synthesized at x = 0–0.1. With the increase of cobalt ionic content at x = 0.2–0.3, a formation of a rutile phase indexed as Zn0.15Nb0.3Ti0.55O2 was detected, which is testified by the Rietveld refinement method and Raman spectra analysis. Benefitted by the appearance of the secondary phase, the microwave dielectric properties, especially the τf value of (Zn1−xCox)0.5Ti0.5(Nb0.9Ta0.1)O4 ceramics were greatly improved, which well agrees with the theoretical prediction of dielectric properties based on mixture rule. Based on the results, it indicates that an excellent promotion effect of the combined usage of cobalt and tantalum oxides can benefit the microwave dielectric properties of the Zn0.5Ti0.5NbO4-based ceramics. Specifically, the (Zn1−xCox)0.5Ti0.5(Nb0.9Ta0.1)O4 (y = 0.1, x = 0.25) ceramic synthesized at 1175 °C shows excellent microwave dielectric properties: εr = 40.3, Q × f = 22,054 GHz,, and τf =  − 5.2 ppm/oC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008)

    Article  CAS  Google Scholar 

  2. H. Yang, S. Zhang, H. Yang, Q. Wen, Q. Yang, L. Gui, Q. Zhao, E. Li, J. Adv. Ceram. 10, 885 (2021)

    Article  CAS  Google Scholar 

  3. F.F. Wu, D. Zhou, C. Du, S.K. Sun, L.X. Pang, B.B. Jin, Z.M. Qi, J. Varghese, Q. Li, X.Q. Zhang, J. Mater. Chem. C 9, 9962 (2021)

    Article  CAS  Google Scholar 

  4. H. Yang, S. Zhang, H. Yang, X. Zhang, E. Li, Inorg. Chem. 57, 8264 (2018)

    Article  CAS  Google Scholar 

  5. D.W. Kim, D.Y. Kim, K.S. Honga, J. Mater. Res. 15, 1331 (2000)

    Article  CAS  Google Scholar 

  6. T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, J. Eur. Ceram. Soc. 23, 2573 (2003)

    Article  CAS  Google Scholar 

  7. R. Shannon, Acta. Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  8. N. Kumada, K. Nakanome, S. Yanagida, T. Takei, I. Fujii, S. Wada, C. Moriyoshi, Y. Kuroiwa, J. Asian. Ceram. Soc. 6, 247 (2018)

    Article  Google Scholar 

  9. I. Abrahams, P.G. Bruce, W.I.F. David, A.R. West, Chem. Mater. 1, 237 (1989)

    Article  CAS  Google Scholar 

  10. C.F. Tseng, J. Eur. Ceram. Soc. 34, 3641 (2014)

    Article  CAS  Google Scholar 

  11. C. Xing, J. Li, J. Wang, H. Chen, H. Qiao, X. Yin, Q. Wang, Z.M. Qi, F. Shi, Inorg. Chem. 57, 7121 (2018)

    Article  CAS  Google Scholar 

  12. R. Zuo, Y. Xu, M. Shi, W. Li, L. He, J. Eur. Ceram. Soc. 38, 4677 (2018)

    Article  CAS  Google Scholar 

  13. C. Pei, J. Tan, Y. Li, G. Yao, Y. Jia, Z. Ren, P. Liu, H. Zhang, J. Adv. Ceram. 9, 588 (2020)

    Article  CAS  Google Scholar 

  14. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  CAS  Google Scholar 

  15. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, New York, 1976)

    Google Scholar 

  16. D.W. Kim, J.H. Kim, J.R. Kim, K.S. Hong, J. Appl. Phys. 40, 5994 (2001)

    Article  CAS  Google Scholar 

  17. E.A. Nenasheva, S.S. Redozubov, N.F. Kartenko, I.M. Gaidamaka, J. Eur. Ceram. Soc. 31, 1097 (2011)

    Article  CAS  Google Scholar 

  18. J. Guo, D. Zhou, L. Wang, H. Wang, T. Shao, Z.M. Qi, X. Yao, Dalton. Trans. 42, 1483 (2013)

    Article  CAS  Google Scholar 

  19. Y.H. Zhang, J.J. Sun, N. Dai, Z.C. Wu, H.T. Wu, C.H. Yang, J. Eur. Ceram. Soc. 39, 1127 (2019)

    Article  CAS  Google Scholar 

  20. F. Huang, H. Su, Y. Li, H. Zhang, X. Tang, J. Adv. Ceram. 9, 471 (2020)

    Article  CAS  Google Scholar 

  21. W. Luo, L. Li, S. Yu, J. Li, B. Zhang, J. Qiao, S. Chen, J. Am. Ceram. Soc. 102, 4612 (2019)

    Article  CAS  Google Scholar 

  22. W. Luo, L. Li, S. Yu, Z. Sun, B. Zhang, F. Xia, J. Alloys Compd. 741, 969 (2018)

    Article  CAS  Google Scholar 

  23. Q. Liao, L. Li, X. Ren, X. Ding, J. Am. Ceram. Soc. 94, 3237 (2011)

    Article  CAS  Google Scholar 

  24. Y. Huang, Y. Li, Z. Wang, Z. Xie, Z. Shen, Y. Hong, Appl. Phys. A 125, 29 (2018)

    Article  Google Scholar 

  25. Z. Huan, Q. Sun, W. Ma, L. Wang, F. Xiao, T. Chen, J. Alloys Compd. 551, 630 (2013)

    Article  CAS  Google Scholar 

  26. P. Ruan, P. Liu, B.C. Guo, Z.F. Fu, J. Mater. Sci. 27, 10622 (2016)

    CAS  Google Scholar 

  27. S.P. Wu, J.H. Luo, J. Alloys Compd. 509, 8126 (2011)

    Article  CAS  Google Scholar 

  28. M. Guo, S. Gong, G. Dou, D. Zhou, J. Alloys Compd. 509, 5988 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Fundamental Research Funds for the Central Universities (Program No. XJS222209); the Qinchuangyuan Citing High-level Innovation and Entrepreneurship Talent Projects (No. QCYRCXM-2022–40); the Natural Science Basic Research Program of Shaanxi (Program No. 2022JQ-390) and the National Natural Science Foundation of China (Program No. 51872037).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SY, EL, JY, JS, BZ, and HY. The first draft of the manuscript was written by SY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shaoyang Yu or Enzhu Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Li, E., Yang, J. et al. The phase composition, microwave dielectric properties, and improved temperature stability of cobalt ionic-doped (Zn1−xCox)0.5Ti0.5(Nb0.9Ta0.1)O4 ceramics. J Mater Sci: Mater Electron 33, 16144–16153 (2022). https://doi.org/10.1007/s10854-022-08505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08505-1

Navigation