Skip to main content
Log in

Preparation of pure NiO thin film by radio frequency magnetron sputtering technique and investigation on its properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The use of nickel oxide as a complementary electrode in electrochromic devices is found to be widespread because of its high coloration efficiency and low materials cost. In the present work, we investigate the properties exhibited by radio frequency (RF) magnetron sputtered nickel oxide (NiO) thin films. The optical, vibrational and morphological characteristics of prepared nickel oxide thin films are tuned with different RF powers (100 W, 150 W and 200 W). The deposited nickel oxide films’ photoluminescence spectra reveal broad band-edges, Ultra-violet emission at 365 nm accompanied by defect-related, at 420 nm (DLE1) and 485 nm (DLE2) which occurred due to deep-level-emission (DLE). The Raman peaks centred at 560 cm−1 are related to 1-phonon longitudinal optic (LO) mode. The peak observed at 1100 cm−1 corresponds to the 2-phonon LO mode of nickel oxide, which is due to the defects of nickel vacancy or an increase in Ni3+ ions. Field emission scanning electron microscopy characterization reveals the prepared films are uniform and pinhole free nature, resulting in a high quality film. The EDX spectrum confirms the purity of the nickel thin film obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request. Compliance with Ethical Standards.

References

  1. P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism and Electrochromic Devices (Cambridge University Press, Cambridge, 2007), p. 421

    Book  Google Scholar 

  2. P.R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future. Mater. Chem. Phys. 77, 117 (2003)

    Article  CAS  Google Scholar 

  3. G. Sonmez, Polymeric electrochromics. Chem. Commun. 42, 5251 (2005)

    Article  Google Scholar 

  4. Q. Liu, Q. Chen, Q. Zhang, Y. Xiao, X. Zhong, G. Dong, M.P.D. Ogletree, H. Terryn, K. Baert, F. Reniers, X. Diao, In-situ electrochromic efficiency of nickel oxide thin film: origin of electrochemical process and electrochromic degradation. J. Mater. Chem. C6, 646 (2018)

    Google Scholar 

  5. E.O. Polat, O. Balcı, C. Kocabas, Graphene based flexible electrochromic devices. Sci. Rep. 4, 6484 (2014)

    Article  CAS  Google Scholar 

  6. C.G. Granqvist, Oxide electrochromics: an introduction to devices and materials. Sol. Energy Mater. Sol. C 99, 1 (2012)

    Article  CAS  Google Scholar 

  7. C.J. Wang, M. Shim, P. Guyot-Sionnest, Electrochromic nanocrystal quantum dots. Science 291, 2390 (2001)

    Article  CAS  Google Scholar 

  8. A. Llordes, G. Garcia, J. Gazquez, D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323 (2013)

    Article  CAS  Google Scholar 

  9. M. Nikolou, A.L. Dyer, T.T. Steckler, E.P. Donoghue, Z. Wu, N.C. Heston, A.G. Rinzler, D.B. Tanner, J.R. Reynolds, Dual n- and p-type dopable electrochromic devices employing transparent carbon nanotube electrodes. Chem. Mater. 21, 5539 (2009)

    Article  CAS  Google Scholar 

  10. S.I. Cho, W.J. Kwon, S.J. Choi, P. Kim, S.A. Park, J. Kim, S.J. Son, R. Xiao, S.H. Kim, S.B. Lee, Nanotube-based ultrafast electrochromic display. Adv. Mater. 17, 171 (2005)

    Article  CAS  Google Scholar 

  11. F.H. Wang, M.E. Itkis, E. Bekyarova, R.C. Haddon, Charge-compensated, semiconducting single-walled carbon nanotube thin film as an electrically configurable optical medium. Nat. Photon. 7, 460 (2013)

    CAS  Google Scholar 

  12. R.J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res. 41, 241 (2011)

    Article  CAS  Google Scholar 

  13. W.S. Choi, M.F. Chisholm, D.J. Singh, T. Choi, G.E. Jellison, H.N. Lee, Wide band gap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012)

    Article  Google Scholar 

  14. M.Z. Sialvi, R.J. Mortimer, G.D. Wilcox, A.M. Teridi, T.S. Varley, K.G.U. Wijayantha, C.A. Kirk, Electrochromic and colorimetric properties of Nickel (II) oxide Thin films prepared by aerosol-assisted chemical vapor deposition. ACS Appl. Mater. Interfaces. 5, 5675 (2013)

    Article  CAS  Google Scholar 

  15. F. Cao, G.X. Pan, X.H. Xia, P.S. Tang, H.F. Chen, Hydrothermal-synthesized mesoporous nickel oxide nanowall arrays with enhanced electrochromic application. Electrochim. Acta. 111, 86 (2013)

    Article  CAS  Google Scholar 

  16. D. Ma, G. Shi, H. Wang, Q. Zhang, Y. Li, Hierarchical NiO microflake films with high coloration efficiency, cyclic stability and low power consumption for applications in a complementary electrochromic device. Nanoscale 5, 4808 (2013)

    Article  CAS  Google Scholar 

  17. J. Zhang, G. Cai, D. Zhou, H. Tang, X. Wang, C.D. Gu, J.P. Tu, Co-doped NiO nanoflake array films with enhanced electrochromic properties. J. Mater. Chem. C 2, 7013 (2014)

    Article  CAS  Google Scholar 

  18. S. Pereira, A. Gonçalves, N. Correia, J. Pinto, L. Pereira, R. Martins, E. Fortunato, Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature. Sol. Energy Mater. Sol. Cells 120, 109 (2014)

    Article  CAS  Google Scholar 

  19. K.S. Usha, R. Sivakumar, C. Sanjeeviraja, Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J. Appl. Phys. 114, 123501 (2013)

    Article  Google Scholar 

  20. E. Azaceta, S. Chavhan, P. Rossi, M. Paderi, S. Fantini, M. Ungureanu, O. Miguel, H.J. Grande, R. Tena-Zaera, NiO cathodic electrochemical deposition from an aprotic ionic liquid: building metal oxide n–p heterojunctions. Electrochim. Acta 71, 39 (2012)

    Article  CAS  Google Scholar 

  21. M. Wu, Y. Huang, C. Yang, J. Jow, Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int. J. Hydrog. Energy 32, 4153 (2007)

    Article  CAS  Google Scholar 

  22. F. Vera, R. Schrebler, E. Muñoz, C. Suarez, P. Cury, H. Gómez, R. Córdova, R.E. Marotti, E.A. Dalchiele, Preparation and characterization of eosin band erythrosine J-sensitized nanostructured NiO thin film photocathodes. Thin Solid Films 490, 182 (2005)

    Article  CAS  Google Scholar 

  23. X. Hou, J. Williams, K.-L. Choy, Processing and structural characterization of porous reforming catalytic films. Thin Solid Films 495, 262 (2006)

    Article  CAS  Google Scholar 

  24. R.C. Korosec, P. Bukovec, Sol–gel prepared NiO thin films for electrochromic applications. Acta Chim. Slov. 53, 136 (2006)

    CAS  Google Scholar 

  25. H. Lee, Y.T. Huang, M.W. Horn, S.P. Feng, Engineered optical and electrical performance of rf–sputtered undoped nickel oxide thin films for inverted perovskite solar cells. Sci. Rep. 8, 5590 (2018)

    Article  Google Scholar 

  26. K.S. Usha, R. Sivakumar, C. Sanjeeviraja, Effect of substrate temperature on structural and optical properties of nickel tungsten oxide thin films. J. Mater. Sci. 26, 1033 (2015)

    CAS  Google Scholar 

  27. A. Manikandan, J.J. Vijaya, L.J. Kennedy, Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties. Physica E 49, 117–123 (2013)

    Article  CAS  Google Scholar 

  28. C.D. Guerra, A. Remon, J.A. Garcia, J. Piqueras, Cathodoluminescence and photoluminescence spectroscopy of NiO. Phys. Status Solidi A 163, 497 (1997)

    Article  Google Scholar 

  29. P. Gupta, M. Ramrakhiani, Influence of the particle size on the optical properties of CdSe nanoparticles. Open Nanosci. J. 3, 15 (2009)

    Article  CAS  Google Scholar 

  30. C.H. Ho, Y.M. Kuo, C.H. Chan, Y.R. Ma, Optical characterization of strong UV luminescence emitted from the excitonic edge of nickel oxide nanotowers. Sci. Rep. 5, 15856 (2015)

    Article  CAS  Google Scholar 

  31. L.Q. Jing, F.L. Yuan, H.G. Hou, B.F. Xin, W.M. Cai, H.G. Fu, Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles. Sci. China Chem. 48, 25 (2005)

    Article  CAS  Google Scholar 

  32. D.Y. Jiang, J.M. Qin, X. Wang, S. Gao, Q.C. Liang, J.X. Zhao, Optical properties of NiO thin films fabricated by electron beam evaporation. Vacuum 86, 1083 (2012)

    Article  CAS  Google Scholar 

  33. P. Colomban, Raman analyses and “Smart” imaging of nanophases and nanosized materials. Spectrosc. Europe 15/6, 8 (2003)

  34. G. Gouadec, Ph. Colomban, Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 53, 1 (2007)

    Article  CAS  Google Scholar 

  35. N.M. Ulmane, A. Kuzmin, I. Sildos, M. Pärs, Polarisation dependent Raman study of single-crystal nickel oxide. Cent. Eur. J. Phys. 9, 1096 (2011)

    Google Scholar 

  36. W.J. Duan, S.H. Lu, Z.L. Wu, Y.S. Wang, Size effects on properties of NiO nanoparticles grown in alkalisalts. J. Phys. Chem. C 116, 26043 (2012)

    Article  CAS  Google Scholar 

  37. D.A. Wruck, M. Rubin, Structure and electronic properties of electrochromic NiO films. J. Electrochem. Soc. 140, 1097 (1993)

    Article  CAS  Google Scholar 

  38. S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2017)

    Book  Google Scholar 

Download references

Acknowledgements

K.S. Usha is grateful to the Department of Science and Technology, New Delhi, India for funding via Innovation in Science Pursuit for Inspired Research (INSPIRE). A grateful acknowledgement is given by an author, R.S to the Department of Education, Government of India for the financial support under RUSA—Phase 2.0 Scheme (Ref. No.: F. 24-51/2014-U, Policy (TNMulti-Gen), dt. 09.10.2018).

Funding

The research leading to these results have received funding from “Innovation in Science Pursuit for Inspired Research (INSPIRE)” funded by Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by KSU. The first draft of the manuscript was written by KSU, RS and CS edited the entire draft. RS supervized the whole work and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. S. Usha.

Ethics declarations

Competing interest

The authors declare that there are no competing financial interest and also they have no known competing financial interests or personal relationships that influence the work reported in this work.

Compliance with ethical standards

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usha, K.S., Sivakumar, R. & Sanjeeviraja, C. Preparation of pure NiO thin film by radio frequency magnetron sputtering technique and investigation on its properties. J Mater Sci: Mater Electron 33, 16136–16143 (2022). https://doi.org/10.1007/s10854-022-08504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08504-2

Navigation